Tuesday, September 18, 2018

9 Opt Maths: Sequence And Series

1. If S= 8n2 + 16n + 12, find the value of t2 + t4+ t6.
Solution:
Given ,
      S= 8n2 +16n+12
We know, 
tn =  sn - sn -1
    = 8n2 +16n+12 - [ 8(n-1) 2 +16 (n-1) + 12]
    = 8n2 +16n+12 - [ 8n 2 +16n +8 + 16n-16+12]
    = 8n2 +16n+12 - 8n 2 - 4
    = 16n + 8 .
Now,
    t2 = 16 × 2+8 = 40   (put n = 2)
    t4 = 16 × 4+8 = 72   (put n = 4)
    t6 = 16 × 6+8 = 104   (put n = 6).
∴  t2 + t4 + t6 = 40+72+104 =216.

2. The nth term of a sequence is (-1)n-1.15nn2-4.. Find its third and eighth terms.
Solution:
Here, the nth term of a sequence tn=(-1)n-1.15nn2-4
Now, the 3rd term of a sequence t3=(-1)3-1.15×332-4      [ Since, put  n = 3.]
                                                           =
(-1)2.459-4
                                                           =
1×455
                                                           =
9.

The 8th term of a sequence t8=(-1)8-1.15×882-4     
[ Since, put n = 8.]
                                                   =
(-1)7.12064-4
                                                   =
-1×12060
                                                   =
-2.

3. The nth term of a sequence is (-1)n-1.75nn2-n-5. Find its 5th and 6th terms.
Solution:
Here, the nth term of a sequence tn=(-1)n-1.75nn2-n-5
Now, the 5th term of a sequence t5=(-1)5-1.75.552-5-5 
                                                           =
(-1)4.75.525-10
                                                           =
1×75×515
                                                            =
25.


The 6th term of a sequence t6=(-1)6-1.75×662-6-5
                                                   =
(-1)5.75×636-11
                                                   =
-1×75×625
                                                   =
-18.

4. u1, u2, u3,. are the terms of sequence where un+1=1-1un u1=3 find the values of u2 and u3.
Solution:
We have, u1=3
Here, un+1=1-1uni.
For n=1,
u1+1=1-1u1
⇒ u=1

-13= 
3-13=23

For n = 2,
u2+1=1-1u2
 u3=1-123=1-32=2-32=-12
Hence, the required value of u2 and u3 are 2/3 and -1/2.

5. Find the uand uof a sequence if its nth term is defined as un=3un-1-1 and u1=2.
Solution: 
Given,
u
1=2 
&   un =3u(n-1)-1
For n = 2
u2=3u(2-1)-1 
      =3u1-1=3×2-1=5 
For n=3
u3=3u(3-1)-1 
     =3u2-1=3×5-1=14 .
 Thus, u= 5 and  u= 14

6. Find the nthterm and 12thterm of the sequence
-1,2,-3,4,
Solution:
Here, the given sequence is-1, 2, -3 , 4,.
1stterm=t1=-1=(-1)1.1
2ndterm=t2=2=(-1)2.2
3rdterm=t3= -3=(-1)3.3
Therefore, nthterm=tn=(-1)n.n
Now, 12thterm=t12=(-1)12.12=12

7. Write down the next two terms of the sequence 2,5, 10, 17,
Solution: 
Here, the given sequence is 2, 5, 10, 17,
We have, t1=2
t2=5=2+3=t1+3
t3=10=5+5=t2+5
t4=17=10+7=t3+7
Now,
t5=t4+9=17+9=26
t6=t5+11=26+11=37

8. Denote the given series 2+4+8+16+32+64 by Σ notation.
Solution:
Here, the given series=2+4+8+16+32+64
We have, first term=t1=2=21
Second term=t2=4=22
Third term=t3=8=23
Hence, nthterm=2n
In the given series, number of term=6
Hence, the given series can be written in form of summation as:
6    
∑2n
n=1


9. If Sn = 4n2 + 5n + 8, find the value of t3 + t5 + t7.
Solution:
Given Sn = 4n2 + 5n + 8
Now, 
tn = Sn - Sn-1 
= (4n2 + 5n + 8) - [4(n - 1)2 + 5(n - 1) + 8]
= 4n2 + 5n + 8 – [4n2 - 8n + 4 + 5n – 5 + 8]
= 8n + 1
Again, t3 = 8 × 3 + 1 = 25
            t5   = 8 × 5 + 1 = 41
                  t7   = 8 × 7 + 1 = 57
 ∴ t3 + t5  +  t7    =  25 + 41 + 57
                                = 123 . 
 
10. If Sn = 8n2 + 16n + 12, find the value of t2 + t4+ t6.
Solution: 
Given,
 Sn = 8n2 + 16n +12
Now,
  tn = Sn - Sn - 1
       = 8n2 + 16n +12 - [8(n - 1)2 + 16(n - 1) + 12]
      = 8n2 + 16n + 12 – (8n2 - 16n + 8 + 16n - 16 + 12)
       = 8n2 + 16n + 12 - 8n2 - 4
        = 16n + 8
 ∴ t2 = 16 × 2 + 8 = 40
    t4 = 16 × 4 + 8 = 72
   t6 = 16 × 6 + 8 = 104
 Thus,  t2 + t4 + t6 = 40 + 72 + 104 = 216 

11. If in a seqⁿ t6 =50 and tn=2tn - 1 + 5n2 + n then find the first five terms of the sequence.
 Solution: 
Given, t6 = 50  and
            tn = 2tn - 1 + 5n2 + n, 
          For n = 6, 
t6   = 2 t6-1 + 5 × 52 + 5 
 50 = 2 t5  +  130
 2 t5  = - 80
 t5  = - 40
Again, for n = 5,
t5   = 2 t4 + 5 × 42 + 4 
 - 40 = 2 × t4  +  100 + 4
 2 t4  = 144
 t4  = 72
Again, for n = 4,
t4 = 2 t3 + 2 × 42 + 4
⇒  72 = 2 t3 + 36
⇒ t3 = 18
Again, for n = 3
t3 = 2 t2 + 5 × 32 + 3
⇒  18 = 2 t3 + 48
⇒ 2t2 = - 30
t2 = -15
Again, for n = 2
t2 = 2 t+ 5 ×22 + 2
⇒  -15 = 2 t1 + 22
⇒ t1 = - 372
1st five term are
372 , -15 , 18, 72, & -40.

12. In a sequence if t8 = 24 and tn = 2tn+2 + 5n2 + n. Find the first three even terms of the sequence.
Solution:
Given, t8 = 24.
tn = 2tn+2 + 5n2 + n, 
For n = 6, 
t6    = 2 t8 + 5 × 62 + 6 
       = 2× 24 + 5 × 36 + 6
       = 234.
For, n = 4, 
t4    = 2 t6 + 5 × 42 + 4 
 t4   = 2 × 234 + 80 + 4
      = 552.
For, n = 2, 
t2   = 2 t4 + 5 × 22 + 2
      = 2 × 552 + 20 + 2
      = 1126.
 ∴ 1st three even term are 1126, 552 and 234.
 
13. Study the given pattern of the given figures:
a.    Add one more figures in the same pattern. 
b.    Find the formula of the nth term of the sequence. 
c.    Find the 10th term of the same sequence. 

 Solution:
Given,
t1 = 1
t2 = 4   
t3 = 7
t= 10
a)

b)  Here
         a = t1 = 1
        d = t2 - t1 = 4 - 1 = 3
   ∴ tn = a + (n - 1)d
          = 1+ (n - 1) × 3
          = 1+ 3n -  3
          = 3n - 2
 c).      t10 = 3 × 10 - 2
             = 28.


14. In the given pattern of triangular numbers:
a. Add one more figure in the same pattern that comes immediately to the next term in the sequence. 
b. Find the formula for the nth term of sequence. 
Solution:

Given 
t1 = 1 = a
t2 = 3
t3 = 6
t4 = 10

Do yourself and find  
n
2
(n+1)

15. 
In the following pattern of numbers, 
a. Add one more figure in the same pattern. 
b. Find the formula for the nth term of the sequence. 

 Solution:
Given 
   t1 = a =  1
   t2 = 5
   t3 = 9
   t4 = 13.

a)

b)

Here, 
     t1 = a = 1
     t2 = 5
    d = t1 - t2 = 5 - 1 = 4 

  ∴  tn = a + (n - 1)d
         = 1 + (n - 1) 4
        = 4n -  3.

16. 
Study the following patterns of numbers:
a. Add two more patterns in the sequence. 
b. Find the formula for the nth dots in the term of the sequence. 

Solution: 

a)

b)

Here,
     t1 = a =3
     t2 = 5
    ∴  Common difference (d) = t2 - t1
                                               = 5 - 3
                                               = 2.

 General term (tn)  = a + (n - 1)d
                               = 3 + (n - 1) 2
                               = 3 + 2n -  2
                               = 2n +  1.
 
17. Study the following patterns:
a. Add two more patterns in the sequence. 
b. Find the formula for the nth dots in the term of the sequence. 
c. Find the 10th term of the sequence. 

 Solution: 
a) Next two terms are, 

b)
t1 = 1 = 12 (1 + 1)
t2 = 3 = 22 (2 + 1)
t3 = 6 = 32 (3 + 1)
t4 = 10 = 42(4 + 1)

Replace 4 = n we get,
tn = n2 (n + 1)

Now,
10th term (t10) = 102 (10 + 1)
                        = 5 × 11
                        = 55 .


Patterns will be uploaded soon.