Solution:
Here,
h (x)=2x+3 and g(x) =3x-2.
Now,
hog (5) = h(g(5))
= h(3×5-2)
=h(13)=2×13+3
∴ hog(5) =29.
Thus, the value of hog (5) is 29.
2. If f(x) =
Solution:
Here,
f (x) =
Let y = f(x)
⇒ y=
Interchanging the position of x and y,
x =
⇒ 2x= 2y+3
⇒ 2x- 3=2y
⇒ y =
∴ f-1(x) =
Thus, the value of f-1(x) is
3. If f (x)=x+1 and g(x) =2x+1, find gₒf(x).
Solution:
Here,
f(x)=x+1 and g(x)=2x+1.
So,
gₒf(x) = g[f(x)]
= g(x+1)
=2(x+1)+1
=2x+2+1
= 2x + 3.
∴ gof(x) = 2x+3.
4. If f (x)=3x-2 and fₒg(x) =6x-2, find g(x).
Solution:
Here,
f(x)=3x-2 and fₒg(x) = 6x-2.
So,
f[g(x)]= 6x-2
⇒ 3g(x)-2 = 6x-2
⇒ 3g(x) = 6x
⇒ g(x) = 3x
∴ g(x) = 2x.
5. If f (x) = 4x+3 then, find the value of f-1(4).
Solution:
Here,
f(x) = 4x+3
⇒ y = 4x+3
Interchanging the position of x and y then,
x =4y+3
⇒ x-3= 4y
⇒ y = (x-3)/4
∴ f-1(x) =(x-3)/4.
Now,
f-1(4) = ( 4-3)/4
= 1/4 .
Thus, the value of f-1(4) is 1/4.
6. If f-1(x) =
Here,
f-1(x) =
Let y =
Interchanging x and y then,
x =
⇒ 2x = y+3
⇒ 2x -3= y
∴ y =2x-3.
Thus, f(x) = 2x-3.
7. If f (x)=2x+5 and g(x) =3x-1, find gₒf(x).
Solution:
Here,
f(x)=2x+5 and g(x) =3x-1
So,
gₒf(x) = g(f(x))
= g(2x+5)
=3(2x+5) -1
= 6x+15-1
= 6x + 14.
∴ gₒf(x) =6x+14.
8. If f-1(x) = 2x-3, find f(x).
Solution
Here,
f-1 (x) = 2x-3.
Let
y = f-1 (x)
⇒ y= 2x-3.
Interchanging the Value of x and y
x= 2y-3
⇒ x+3 = 2y
⇒ y =
Thus,f(x)=
9. If g (x) =
Solution:
Here,
g(x) =
We have, gh(x) = g (h(x))= g(3x+2)
=
=
∴ gh(x)= x.
Thus, gh(x) = x shows that it is an identity function.
10. If f (x)=2x-3 and g(x) =x2 +1, find the value of fₒg(3).
Here,
f (x)=2x-3 and g(x) =x2 +1.
We have, fₒg(3) = f[g(3)]
= f(32+1)
=f(10)
= 2×10-3
=17.
Thus, the value of fₒg(3) is 17.
11. If f = {x, 5x – 13}, g = {x,
Here,
f = {x, 5x – 13},
g = {x,
and g-1(x) = ff(x)
Let y = g(x)
or, y =
Interchanging the position of x and y, then
x =
⇒ 3x = 2y + 7
⇒ 3x – 7 = 2y
⇒ y =
∴ g-1(x) =
Again,
ff(x) = f(f(x))
= f(5x – 13)
= 5(5x – 13) – 13
= 25x – 65 - 13
∴ ff(x) = 25x – 78
Now, by the question,
⇒ 3x – 7 = 50x – 156
⇒ 194 = 47x
∴ x = 149/47.
Thus, the value of x is 3.17.
12. If 2f(x) = kx -3,
Solution:
Here,
2f(x) = kx – 3,
f og-1(3) = -
∴ f (x) =
g(x) =
For g-1(x);
Let y = g(x)
⇒ y =
Interchanging the position of x and y,
x =
⇒ xy + 2x = 3
⇒ xy = 3 – 2x
y =
∴ g-1(3) =
=
=
= -1
Now,
f g-1(3) =
⇒ f(g-1(3)) =
⇒ f(-1) =
⇒ -k – 3 =
⇒ 2k + 6 = 1
⇒ 2k = -5
∴ k =
Thus, the value of k is
13. Given that the functions f(x) = 3x – 7 and g(x) =
Solution
Here,
f(x) = 3x – 7 and
g(x) =
Taking g(x) =
Let y = g(x) =
Interchanging the position of x and y.
x =
⇒ 3x = 5y + 2
⇒ 3x – 2 = 5y
⇒y =
∴ g-1(x) =
Now,
g-1(f(x)) = g-1(3x – 7)
⇒ 8 =
⇒ 9x – 21 – 2 = 40
⇒ 9x = 63
∴ x = 7.
Thus, the value of x is 7.
14. If f(x) =
Solution:
Here,
f(x) =
g(x) =
and fₒg(x) = 6
Taking g(x) =
Let y = g(x)
⇒ y =
Interchanging the position of x and y
x =
⇒ 2x = y – 5
∴ y = 2x + 5
∴ g-1(x) = 2x + 5.
Now, f og-1(x) = 6
⇒ f(g-1(x)) = 6
⇒ f(2x + 5) = 6
⇒
⇒ 2x + 6 = 12
⇒ 2x = 6
∴ x = 3.
Thus, the value of x is 3.
15. If f(x) = 3x + 4 and g(x) = 2(x + 1) then
prove that (fₒg)(x) = (gₒf)(x).
Solution:Here,
f(x) = 3x + 4
and g(x) = 2(x + 1)
= 2x + 2.
Now,
fₒg(x) = f[g(x)]
= f(2x + 2)
= 3 (2x + 2) + 4
= 6x + 6 + 4
∴ fₒg(x) = 6x + 10 .
Again,
gₒf(x) = g(3x + 4)
= 2(3x + 4) + 2
= 6x + 8 + 2
= 6x + 10.
Thus, fₒg(x) = gₒf(x).
16. If f(x) = 3x – 1 and fₒg(x) = 6x + 5, then find (gₒf)-1.
Solution:
Here,
f(x) = 3x – 1 and
fₒg(x) = 6x + 5
⇒ f(g(x)) = 6x + 5
⇒ 3g(x) – 1 = 6x + 5
⇒ 3g(x) = 6x + 6
∴ g(x) = 2x + 2.
Now,
gₒf(x) = g[f(x)] = g(3x – 1)
= 2(3x -1) + 2
= 6x – 2 + 2
∴ gₒf = 6x .
Let y = 6x
Interchanging x and y then,
x = 6y
∴ y =
Thus, (gₒf)-1 =
17. If f(x) = 3x – 7, g(x) =
Solution:
Here,
f(x) = 3x – 7 and
g(x) =
Let
y = f(x)
⇒ y = 3x – 7
Interchanging x and y, then
x = 3y – 7
⇒ x + 7 = 3y
⇒ y =
∴ f-1(x) =
We have given,
f-1(x) = g(x)
⇒
⇒ 12x – 6 = 3x + 21
⇒ 9x = 27
∴ x = 3.
Thus, the value of x is 3.
18. If f(x) = 2x – 7 and fₒg(x) = 4x + 3, find (gₒf)-1(x).
Solution:
Here,
f(x) = 2x + 7 and
fₒg(x) = 4x + 3.
So,
fₒg(x) = 4x + 3
⇒ f(g(x)) = 4x + 3
⇒ 2.g(x) - 7 = 4x + 3
⇒ 2g(x) = 4x + 10
∴ g(x) = 2x + 5
We have,
gₒf(x) = g(f(x))
= g(2x – 7)
= 2(2x – 7) + 5
= 4x – 14 + 5
∴ gₒf(x) = 4x – 9
Let y = 4x – 9 and interchanging x and y
then,
x = 4y – 9
⇒ x + 9 = 4y
Thus, (gₒf)-1 (x) =
19. If f(x) = 3x – 4 and f-1g(x) =
find g(x) and f-1(
Solution:
Here,
f(x) = 3x – 4 and
f-1g(x) =
Let,
y = f(x)
⇒ y = 3x – 4
Interchanging the position of x and y then,
x = 3y – 4
⇒ x + 4 = 3y
∴ y =
i.e. f-1(x) =
By the question,
f-1g(x) =
So,
f-1(g (x)) =
⇒
⇒ g(x) + 4 = 3x + 2
∴ g(x) = 3x – 2
Now,
f-1(
=
=
=
Thus,
g(x) = 3x – 2 and
f-1 (
20. If f(x) = 2x + 3, g(x) =
Solution:
Here,
f(x) = 2x + 3,
g(x) =
ff(x) = g-1(x)
So,
ff(x) = f(f(x))
= f(2x + 3)
= 2(2x + 3) + 3
= 4x + 6 + 3
= 4x + 9 .
Again,
Let, y = g(x)
⇒ y =
Interchanging the position of x and y,
x =
⇒ 2x = y + 5
⇒ 2x – 5 = y
∴ y = 2x – 5
So, g-1(x) = 2x - 5 .
Now,
ff(x) = g-1(x)
⇒ 4x + 9 = 2x – 5
⇒ 2x = -14
∴ x = -7 .
Thus, the value of x is -7.
⇒