Proof: Here,
LS = 2cos70°. cos20°
= cos (70° + 20°) + cos(70° - 20°)
= cos90° + cos50°
= 0 + cos50°
= cos50°
=RS .
Proved.
2. Prove that:LHS =
=
=
= tan 3A
= RHS.
Proved.
3. Prove that:
L.H.S =
=
=
= tan
= RHS
Proved.
4. Prove that :
Proof: Here,
LHS =
=
=
=
=
=
= tan 25°
= RHS
Proved.
5. If sin θ =
Solution: Here,
sin θ =
We know that,
cos 2θ = 1- 2sin2 θ
= 1-2 (
= 1- 2 ×
=
Thus, the value of cos 2θ is
6. Prove that:
Proof:
LHS =
=
=
=
=
= cot 40°
= cot (90°-50°)
= tan 50°
= RHS
Proved.
7. Prove that:
LHS=
=
= sin 5θ. sin3θ
= RHS.
Proved.
8. Prove that:
cosec2θ - cot2θ = tanθ
Solution: Here,LHS= cosec 2θ - cot 2θ
=
=
=
=
= tan θ
= RHS
Proved.
9. Prove that:
2cos70°. cos20° = cos50°
Proof: Here, LHS = 2cos70°. cos20°
= cos(70° + 20°) + cos(70° - 20°)
= cos90° + cos50°
= 0 + cos50°
= cos50°
= RHS .
Proved.
10. Prove that:
sin 20° sin 30° sin 40° sin 80° = √3/16
Proof: Here,LHS = sin 20° sin 30° sin 40° sin 80°
= sin 20°
= sin 20°×
=
=

=
=
=
=
=
=
=
= RHS .
Proved.
11. Prove that:
8 cos 10°. cos 50° cos 70° = √3
Proof: Here,LHS = 8 cos 10°. cos 50° cos 70°
= 4 cos 10°(2 cos 50°. cos 70°)
= 4 cos 10°[cos (50°+ 70°) + cos(50° - 70°)]
= 4 cos 10° ×
= -2 cos 10° + 2[cos (10° + 20°) + cos(10°- 20°)]
= - 2 cos 10° + 2 cos 30° + 2cos 10°
= 2 cos 30°
=2⨉
= RHS.
Proved .
12. Prove that:
4 cos(60o + A). cos(60o - A) . cosA = cos3A. Proof: Here,
LHS = 4 cos(60o + A). cos(60o - A) . cosA
= 2[2 cos(60o + A). cos(60o - A) ] cosA
= 2cosA[cos(60 + A + 60 - A) + cos(60 + A - 60-A)]
= 2cosA[ cos120 + cos2A]
= 2cosA[ -1/2 + 2cos2A - 1]
= cosA [ -1 + 4cos2A - 2]
= 4 cos3A - 3cosA
= cos3A
= RHS.
Proved.
13. Prove:
4 cos(60o + A). sin(30o + A) . cosA = cos3A
Proof: Here,
LHS = 4 cos(60o + A). sin(30o + A) . cosA
= 2[2 cos(60o + A). sin(30o+ A) ] cosA
= 2cosA[sin(60o + A + 30o + A) - sin(60o + A - 30o-A)]
= 2cosA[ sin(90o + 2A) - sin30]
= 2cosA[cos 2A-1/2]
= 2cosA[ -1/2 + 2cos2A - 1]
= cosA [ -1 + 4cos2A - 2]
= 4 cos3A - 3cosA
= cos3A
= RHS.
Proved.
14. Prove that: 4 sinA sin(60o + A). sin(60o - A) = sin3A.
Proof: Here,
LHS = 4 sinA sin(60o +A). sin(60o - A)
= 2sinA[2 sin(60o + A). sin(60o+ A) ]
= 2sinA[cos(60o + A - 60o + A) - cos(60o + A + 60o-A)]
= 2sinA[ cos 2A - cos120o]
= 2sinA[cos 2A +1/2]
= 2sinA[1 - 2sin2A + 1/2]
= sinA [ 2 - 4sin2A + 1]
= 3 sinA - 4 sin3A
= sin3A
= RHS.
Proved.
15. Without using calculator, find the value of : 2sin15o.sin105o .
Solution: Here,
2sin15o .sin105 o
= cos(15o - 105o) - cos(15o + 105o)
= cos(- 90o) - cos120o
= cos90o - cos120o
= 0 -(-
=
16. Without using calculator ,
find the value of : cos15o.cos105 o .
Solution: Here,
cos15o .cos105o
=
=
=
=
=
17. Prove that :
4(cos320o + sin350o) = 3√3 cos10o.
Proof: Here,
LHS = 4(cos320o + sin350o)
= 4cos320o + 4sin350o
= cos(3.20o) + 3cos20o + 3 sin50o - sin(3.50o)
= cos60o + 3cos20o + 3 sin50o - sin150o
=
=
= 3(sin70o + sin50o)
= 3 (2 sin60o.cos10o) [ Using formula of sinC + sinD.]
= 3 (2 .
= 3√3 cos10o.
= RHS.
Proved.
18. Prove that:
4(cos310o + sin320o) = 3√3 cos40o.
Proof: Here,
LHS = 4(cos310o + sin320o)
= 4cos310o + 4sin320o
= cos(3.10o) + 3cos10o + 3 sin20o - sin(3.20o)
= cos30o + 3cos10o + 3 sin20o - sin60o
=
=
= 3 (2 sin50o.cos30o) [ Using formula of sinC + sinD.]
= 3 (2 .
= 3√3 cos40o.
= RHS.
Proved.
.