In conditional trigonometric identities we will discuss certain relationship exists among the angles involved. We know some of the trigonometric identities which were true for all values of the angles involved. These identities hold for all values of the angles which satisfy the given conditions among them and hence they are called conditional trigonometric identities.
Such identities involving different trigonometrical ratios of three or more angles can be deduced when these angles are connected by some given relation. Suppose, if the sum of three angles be equal to two right angles then we can establish many important identities involving trigonometrical ratios of those angles. To establish such identities we require to use the properties of supplementary and complementary angles.
If A, B and C denote the angles of a triangle ABC, then the relation A + B + C = π enables us to establish many important identities involving trigonometric ratios of these angles The following results are useful to obtain the said identities.
If A + B + C = π, then the sum of any two angles is supplementary to the third i.e.,
(i) B + C = π - A or, C + A = π - B or A + B = π - C.
(ii) If A + B + C = π then
sin (A + B) = sin (π - C) = sin C
sin (B + C) = sin (π - A) = sin A
sin (C + A) = sin (π - B) = sin B
(iii) If A + B + C = π then
cos (A + B) = cos (π - C) = - cos C
cos (B + C) = cos (π - A) = - cos A
cos (C + A) = cos (π - B) = - cos B
(iv) If A + B + C = π then
tan (A + B) = tan (π - C) = - tan C
tan (B + C) = tan (π - A) = - tan A
tan (C + A) = tan (π - B) = - tan B
(v) If A + B + C = π then,
+ + =Hence, it is evident that the sum of any two of the three angles
, , A/2 is complementary to the third.
i.e., = π/2 - C/2,
= -
= -
Therefore,
sin ( + ) = sin - = cos
sin ( + ) = sin - = cos
sin ( + ) = sin - = cos
cos ( + ) = cos - = sin
sin ( + ) = cos - = sin
sin ( + ) = cos - = sin
tan ( + ) = tan - = cot
tan ( + ) = tan - = cot
tan ( + ) = tan - = cot
In conditional trigonometric identities we will discuss certain relationship exists among the angles involved. We know some of the trigonometric identities which were true for all values of the angles involved. These identities hold for all values of the angles which satisfy the given conditions among them and hence they are called conditional trigonometric identities.
Proof of some conditional trigonometric identities.
1. If A + B + C = 180° then prove that:
A + B + C =
i.e. A + B =
⇒ sin(A + B) = sin(
⇒ cos(A + B) = cos (
LHS = cos(B + C – A) + cos(C + A – B) + cos(A + B - C)
= cos(180° - 2A) + cos(180° - 2B) + cos(180° - 2C)
= - cos2A + cos2B – cos2C
= - (cos2A + cos2B) – cos2C
= - 2 cos(A + B) cos(A – B) – cos2C
= 2 cosC cos(A – B) – 2cos2 C + 1
= 1 + 2 cosC [cos (A – B) – cosC]
= 1 + 2cosC [cos(A – B) + cos(A + B)]
= 1 + 2cosC (2cosA cosB)
= 1 + 4cosA cosB cosC
= RHS.
2. If A + B + C = 180° then prove that:
A + B + C =
⇒ A + B = πc- C
⇒ sin(A + B) = sin(π c - C) sinC
⇒ cos(A + B) = cos (πc - C) = -cosC.
LHS = cos(B + C – A) + cos(C + A – B) + cos(A + B - C)
= cos(180° - 2A) + cos(180° - 2B) + cos(180° - 2C)
= - cos2A + cos2B – cos2C
= - (cos2A + cos2B) – cos2C
= - 2 cos(A + B) cos(A – B) – cos2C
= 2 cosC cos(A – B) – 2cos2 C + 1
= 1 + 2 cosC [cos (A – B) – cosC]
= 1 + 2cosC [cos(A – B) + cos(A + B)]
= 1 + 2cosC (2cosA cosB)
= 1 + 4cosA cosB cosC
= RHS.
3. If P + Q + R = 180° then prove that:
P + Q + R = π
⇒ P + Q = π - R
Operating by sin & cos,
sin (P + Q) = sin R
cos (P + Q) = - cos R.
LHS = sin 2P + sin2Q + sin 2R
= 2 sin
= 2 sin (P + Q) cos (P - Q) + sin 2R
= 2 sin R cos (P - Q) + 2sin R cos R
= 2 sin R {cos(P - Q) + cos R}
= 2 sin R{ cos (P- Q) - cos (P + Q)}
= 2 sin R. 2 cos
= 4 sin R sin P sin Q
= 4 sin P sin Q sin R
= RHS.
4. If A + B + C =180° , Prove that:
sin A - sin B + sin C = 4 sin
Proof: Here,
A + B + C = π
⇒
⇒
LHS = sin A - sin B + sin C
=
= 2 sin
= 2 sin
= 2 sin
= 4 sin
= 4 sin
= 4 sin
= RHS.
5. If A + B + C =180° then Prove that: cos2 A+ cos2 B +2cos A cos B cos C = sin2 C.
Proof: Here,
A + B =180°- C
∴ cos (A + B) = cos (180°-C) = - cos c
& sin (A + B) = sin (180°-C) = sin c.
LHS = cos2 A+ cos2 B +2cos A cos B cos C
=
=
= 1 +
= 1 +
= 1+ cos (A + B) cos (A - B) + 2cosA cosB cosC
= 1 - cos C cos (A - B) + 2cos A cos B cos C
= 1 - cos C [cos (A – B) – 2cosA cosB]
= 1 – cosC [cosA cosB + sinA sinB – 2cosA cosB]
= 1 + cosC [cosA cosB – sinA sinB ]
= 1 + cosC cos (A + B)
= 1 + cosC (- cos C )
= 1 - cos2 C
= sin2C
= RHS.
6. If P + Q + R = πc then prove that:
P + Q + R = 180°
⇒
⇒
⇒ sin (
∴ sin (
RHS = sin P + sin Q + sin R
= 2sin
= 2cos
= 2cos
= 2 cos
= 4 cos
= 4 cos
7. If P + Q + R = 180° then, prove that:
P + Q + R =180°
⇒ P + Q =180°- R
Taking sin and cos on both the sides then,
sin (P + Q) = sin (180°- R) = sin R
& cos (P + Q) = cos (180°- R) = - cos R
LHS =
=
=
=
Taking numerator only,
sin2P + sin 2Q + sin 2R
= 2 sin (
= 2 sin (P +Q) cos (P-Q) + 2 sin R cos R
= 2 sin R cos (P-Q) + 2 sin R cos R
= 2 sin R [cos (P-Q) + cos R]
= 2 sin R [cos (P-Q) - cos (P+Q)]
= 2 sin R. 2 sin P sin Q
= 4 sin R sinQ sin R
Now, relation (A) becomes;
= 2.
= RHS.
8. If A + B + C =180° , Prove that:
sin2 A+ sin2 B + sin 2 C = 2 + 2cos A. cos B.cos C
Proof: Here,
A + B + C =180°
⇒ A + B =180°- C .
Taking sin and cos on both the sides
sin (A + B) = sin (180°-C) = sin C
& cos (A + B) = cos (180°-C) = - cos C
LHS = sin2 A+ sin2 B + sin 2 C
=
=
= 1 -
= 1 -
= 1 - cos (A+B) cos (A-B) + sin 2 C
= 1 + cos C cos (A-B) + 1- cos2 C
= 2 + cos C [cos (A-B) + cos (A + B)]
= 2 + 2cos A cos B cos C
= RHS.
9. If A + B + C = πc , prove that:
10. If A + B + C = πc , prove that:
Solution: Here,
A + B + C = πc
A + B = πc – C
Taking sin and cos on both the sides then,
sin (A + B) = sin (πc-C) = sin C
cos (A+B) = cos (πc-C) = - cos C
Taking, sin 2A +sin2B+ sin2C,
sin 2A +sin2B+ sin2C
=
=
=
=
= 4 sin A sinB sinC.
LHS =
=
=
= 8
= RHS.
11. If A + B + C = πc, prove that:
A + B + C = πc
⇒ A + B = πc - C
⇒
⇒ sin
⇒ cos
LHS = cos A + cos B + cos C
= 2 cos
= 2 sin
= 1 + 2 sin
= 1 + 2 cos
= 1 + 2 sin
= 1 + 4 sin
= 1 + 4 sin
= 1 +4 sin
= RHS.
12. If A + B + C = 180o, prove that: cotA cotB + cotB cotC + cotC cotA = 1.
Proof: Here,
We have given,
A + B + C = 180o
⇒ A + B = 180 - C
Now operating on both sides by cot we get
Cot(A + B) = cot(180 - C)
⇒
⇒ cotA cotB - 1 = -cotC( cotA + cotB)
⇒ cotA cotB - 1 = - cotC cotA - cotC cotB
⇒ cotA cotB + cotB cotC + cotC cotA = 1.
LHS = RHS
13. If A + B + C = 180o, prove that:
tanA + tanB + tanC = tanA tanB tanC.
Proof: We have given,
A + B + C = 180o
⇒ A + B = 180o - C
Operating both sides by tan, we get
tan(A + B) = tan( 180o - C)
⇒
⇒ tanA + tanB = -tanC( 1 - tanA tanB)
⇒ tanA + tanB = - tanC + tanA tanB tanC
⇒ tanA + tanB + tanC = tanA tanB tanC
∴ LHS = RHS.
14. If A + B + C = 180o, prove that:
tan2A + tan2B + tan2C = tan2A tan2B tan2C.
Proof: We have given,
A + B + C = 180o
⇒ 2A + 2B = 180o - 2C
Operating both sides by tan, we get
tan(2A + 2B) = tan( 180o - 2C)
⇒ tan2A + tan2B = -tan2C( 1 - tan2A tan2B)
⇒ tan2A + tan2B = - tan2C + tan2A tan2B tan2C
⇒ tan2A + tan2B + tan2C = tan2A tan2B tan2C
LHS = RHS
15. If A , B & C are the vertices of a triangle, prove that:
cos2A - cos2B - cos2C = -1 + 4 cosA sinB sinC.
Proof: Here, we have given,
A + B + C = 180o ⟹ A + B = 180o - C
LHS = cos2A - cos2B - cos2C
=
= 2sin(A + B) sin(B - A) - cos2C
= 2sin(180o - C) sin(B - A) - ( 1 - 2sin2C)
= 2 sinC sin(B - A) - 1 + 2sin2C
= - 1 + 2sinC[ sin(B - A) + sinC]
= - 1 + 2sinC[ sin(B - A) + sin(180 - (A + B))]
= - 1 + 2sinC[ sin(B - A) + sin(A + B)]
= - 1 + 2sinC ( 2 sinB cosA)
= -1 + 4 cosA sinB sinC.
= RHS.
16. If A + B + C = πc , prove that:
cos2A + cos2B + cos2C = 1 - 2cosA cosB cosC.
Proof: We have given,
A + B + C = πc
⟹ A + B = πc - C
⟹ cos(A + B) = cos(πc - C)
⟹ cos(A + B) = - cosC
⟹ cosA cosB - sinA sinB = - cosC
⟹ cosA cosB + cosC = sinA sinB
Squaring both sides,
(cosA cosB + cosC)2 = (sinA sinB)2
⟹ cos2A cos2B + 2cosA cosB cosC + cos2C = ( 1 - cos2A)(1 - cos2B) [ Since, sin2A = 1 - cos2A.]
⟹ cos2A cos2B + 2cosA cosB cosC + cos2C = 1 - ⟹ cos2A- cos2B+ cos2A cos2B
⟹ cos2A + cos2B + cos2C = 1 - 2cosA cosB cosC
∴ LHS = RHS.
17. If A,B, C,D are cylic quadrilateral then prove that cosA+cosB+cosC+cosD=0.
Proof: We know from one of its many properties that, the opposite angles of ABCD are supplementary,
That is A + C = 180°……………….………………….(1)
And B + D = 180°……………….………………….(2)
Transposing C from left to right in eq. (1),
A = 180o- C
Taking cosines on both sides,
cos A = cos (π - C) = - cos C
⟹ cos A + cos C = 0………………………..……(3)
Similarly it can be shown from eq.(2) that
cos B + cos D = 0……………………..……………(4)
Adding eq.(3) and eq.(4), we get
cos A + cos B + cos C + cos D = 0
18. If A+B+C = 180° prove that : Sin2A + Sin2B + Sin2C = 4SinA SinB SinC.
Proof: Here,
LHS = sin2A + sin 2B +sin2C
= 2 sin(A+B)cos(A-B) + 2sinC cosC
=2sinC cos(A-B)+2sinC cosC
=2sinC (cos(A-b) + cos C)
=2sin C(cos(A-B) - cos(A+B) )
= 2sinC . 2sin A sin B
=4 sinA sin B sin C
= RHS.
19. If A+B+C = 180o, then prove that : sin A.cosB.cosC + sinB. cosA.cosC + sinC.cosA.cosB = sinA.sinA.sinC.
Proof: Here,
Given A+B+C =180o.
Now,
L.H.S. = sin A.cosB.cosC + sinB. cosA.cosC + sinC.cosA.cosB
=cosC( sinA cosB+ sinB cosA) + sinC cosA cosB
= cosC sin( A+B) + sinC cosA cosB
= cosC sinC + sinC cosA cosB
= sinC[ cosC + cosA cosB ]
= sinC[ cosA cosB + cos{180 -(A+B) }] [ Sincs, cosC= cos{180 - (A+B) } .]
= sinC [ cosA cosB - cos( A+B) ]
= sinC [ cosA cosB - cosA cosB+sinA sinB ]
= sinA sinB sinC
= R.H.S.
N