sin2θ - sin θ + 1 = 0 [0° ≤ θ 90°]
Solution: Here,
sin2θ - sin θ +
⇒ 4sin2 θ - 4sin θ + 1 = 0
⇒ (2sin θ - 1)2 = 0
⇒ 2sin θ - 1 = 0
⇒ 2sin θ = 1
⇒ sin θ =
⇒ sin θ = sin30° [Since, 0° ≤ θ ≤ 90°]
∴ θ = 30°.
Thus, the value of θ is 30°.
2. Solve:
√3 tan θ +3 = 0 [0° ≤ θ ≤ 180°]
Solution: Here,
√3 tan θ +3 = 0
⇒ √3 tan θ = -3
⇒ tan θ = - √3
⇒ tan θ = tan (180°-60°) [Since, 0° ≤ θ ≤ 180°]
∴ θ = 120°
Thus, the value of θ is 120° .
3. Solve:
4-3 sec2θ = 0 [0° ≤ θ 90°]
Solution: Here, 4-3 sec2θ = 0
⇒ 4 = 3 sec2θ
⇒
⇒ sec θ = 2/√3
⇒ sec θ = sec 30° [∵ θ ≤90°]
∴ θ = 30°
Thus, value of θ = 30°.
4. Solve:
1- tan2θ = -2 [0° ≤ θ 90°]
Solution: Here, 1- tan2θ = -2
⇒ 3 = tan2θ
⇒ tan2θ = (± √3) 2
⇒ tanθ = ± √3 [∵θ≤ 90°]
⇒ tanθ = tan 60°
∴ θ = 60°.
Thus, the value of θ is 60°.
5. Solve:
√3 tan A+1 = 0 [0° ≤A ≤ 180°]
Solution: Here,√3 tan A+1 = 0
⇒ √3 tan A = -1
⇒ tanA = - 1/√3
⇒ tanA = tan (180°-30°) [Since, 0° ≤A ≤ 180°]
∴ A = 150°.
Thus, the value of A is 150°.
6. Solve:
sin 2θ + cos θ = 0 [0° ≤ θ ≤ 90°]
Solution: Here,sin 2θ + cos θ = 0
⇒ 2sin θ. cos θ + cos θ = 0
⇒ cos θ (2sin θ+1)=0.
Either, cos θ =0
⇒ cos θ = cos 90°
∴ θ = 90°.
OR, 2sin θ = -1
⇒sin θ= - 1/2 [ Rejected, Since, [0° ≤ θ ≤ 90°]
Thus, the value of θ is 90°.
7. Solve:
3 tan θ - √3 = 0 [0° ≤ θ≤ 90°]
Solution: Here,3 tan θ - √3 = 0
⇒ 3 tan θ= √3
⇒ tan θ = (√3)/3
⇒ tan θ = 1/(√3)
⇒ tan θ = tan 30° [since 0° ≤ θ≤ 90°]
∴ θ = 30°.
Thus θ = 30° is the solution.
8. Solve:
sin x - sin2x = 0 [0° ≤ x≤ 2 ]
Solution: Here, sin x - sin2x = 0
⇒ sin x - 2sinx. cos x = 0
⇒ sin x (1- 2cos x) = 0 .
Either,
sin x = 0
i.e. sin x = sin 0°
∴ x = 0°.
OR,
1- 2cos x = 0
⇒ 2cos x = 1
⇒ cosx = 1/2
⇒ cosx = cos60°
∴ x = 60°.
Thus, x = 0° or 60° is the solution.
9. Solve:
√3 tan θ - 3 = 0 [0° ≤θ≤ π c]
Solution: Here, √3 tan θ = 3
⇒ tan θ = √3
⇒ tan θ = tan60° [∵θ≤ 180°]
∴ θ = 60°
Thus, the value of θ = 60° .
10. Solve:
tan 𝜃 = cot 𝜃 [0° ≤ 𝜃≤ 90°]
Solution: Here, tan θ = cotθ
⇒ tan θ = 1/(tan θ)
⇒ tan2 θ = 1
⇒ tan θ = ±1.
Since, θ ≤ 90°.
So, taking positive value only,
tan θ = 1
i.e. tanθ = tan45°
∴ θ = 45°.
Thus, the value of θ is 45°.
11. Solve:
sin2θ - sin θ + 1 = 0 [0° ≤ θ ≤ 90°]
Solution: Here, sin2θ - sin θ +
⇒ 4sin2 θ - 4sin θ + 1 = 0
⇒ (2sin θ)2 - 2.2sin θ .1+ 12 = 0
⇒ (2sin θ - 1)2 = 0
⇒ 2sin θ - 1 = 0
⇒ 2sin θ = 1
⇒ sin θ =
⇒ sin θ = sin30° [Since, 0° ≤ θ ≤ 90°]
∴ θ = 30°.
Thus, the value of θ is 30°.
12. Solve:
2√3 cos2θ = sinθ (0°≤ θ ≤ 360°)
Solution: Here, 2√3 cos2θ = sinθ
⇒ 2√3(1 – sin2θ) = sinθ
⇒ 2√3 - 2√3 sin2θ – sinθ = 0
⇒ 2√3 sin2θ + sinθ - 2√3 =
⇒ 2√3 sin2θ + 4sinθ - 3sinθ - 2√3 = 0
⇒ 2sinθ (√3 sinθ + 2) - √3(√3sinθ + 2) = 0
⇒ (√3 sinθ + 2) (2sinθ - √3) = 0.
Either, √3sinθ + 2 = 0 …….. (i)
OR, 2sinθ - √3 = 0 ………. (ii) .
From, (i)
√3 sinθ + 2 = 0
⇒ √3 sinθ = -2
⇒ sinθ = -2/√3 = -1.154<-1 (Impossible)
From (ii);
2 sinθ = √3
⇒ sinθ = √3/2
⇒ sinθ = sin60° or (180° - 60°)
∴ θ = 60° or 120°.
Thus, θ = 60° or 120° is the solution.
14. Solve:
sinθ + cosθ = 1
Solution: Here, sinθ + cosθ = 1 .
Now
√
= ✓
=
Dividing given equation by
⇒ sinθcos45° + cosθsin45° =
⇒ sin (θ + 45°) = sin45° =
⇒ sin(θ + 45°) = sin45° or 135° or (360° + 45°)
⇒ θ + 45° = 45° or, 135° or, 405°
∴ θ = 0° or 90° or 360°.
Thus, the value of θ is 0°, 90°, 360°.
15. Solve:
√3 sinθ + cosθ = √2 [0° ≤ θ ≤ 360°]
(Same as problem 14)16. Solve:
1 + √3 tanα - sec α = 0 (0° ≤ θ ≤ 360°)
Solution: Here, 1 + √3 tanα - sec α
⇒ 1 +
⇒
⇒ cosα + √3 sinα - 1 = 0
⇒ cos α + √3 sinα = 1
( Same as problem 14 and 15)
17. Solve:
sinA + sin3A = sin2A (0° ≤ A ≤ 360°)
Solution: Here, sinA + sin3A = sin2A
⇒ 2sin(
⇒ 2sin2A cosA – sin2A = 0
⇒ sin 2A (2cosA – 1) = 0 .
Either,
sin2A = 0
⇒ sin2A = sin0° or 360°
⇒ 2A = 0° or 360°
∴ A = 0° or, 180°.
OR,
2cosA – 1 = 0
⇒ cosA = 1/2
⇒ cosA = cos60° or (360° - 60°)
∴ A = 60° or 300°
Thus, A = 0° or 60° or 180° or 300°.
18. Solve:
√3 sinθ – cosθ = √2. (0° ≤ θ ≤ 360°)
Solution: do yourself19. Solve:
√3 sinx + cos x = 1 (0° ≤ x ≤ 360°)
Solution: do yourself20. Solve:
sinA = √3 (1 – cosA) (0° ≤ A ≤ 360°)
Solution: Here,sinA = √3 (1 – cosA)
i.e. sinA = √3 - √(3 )cosA
i.e. sinA + √3 cosA = √3
Now do yourself
21. Solve:
(1 - √3 )tanθ + 1 + √3 = √3 sec2 θ (0°≤A≤360°)
Solution: Here, (1 - √3 )tan θ + 1 + √3 = √3 sec2 θ
⇒ (1 - √3 )tan θ + 1 + √3 = √3 (1 + tan2 θ)
⇒ (1 - √3 )tan θ + 1 + √3 = √3 + √3 tan2 θ
⇒ √3 tan2 θ + (√3 - 1)tan θ - 1 = 0
⇒ √3 tan2 θ + √3 tan θ - tan θ - 1 = 0
⇒ √3 tan θ(tan θ + 1) – 1(tan θ + 1) = 0
⇒ (tan θ + 1) (√3 tan θ - 1) = 0.
Either, tanθ + 1 = 0
⇒ tan θ = -1
⇒ tan θ = tan (180° - 45°) or (360° - 45°)
∴ θ = 135° or 315°.
OR, √3 tan θ - 1 = 0
⇒ tan θ = 1/√(3 )
⇒ tan θ = tan 30° or (180° + 30°)
∴ θ = 30° or 210°.
Thus, the values of θ are 30°, 135°, 210°, 315°.
22. Solve:
2√3 sin2 θ = cos θ. (0° ≤ θ ≤ 360°)
Solution: Here, 2√3 sin2 θ = cos θ
⇒ 2√3 (1 – cos2 θ) = cos θ
⇒ 2 √3 - 2√3 cos2 θ = cos θ
⇒ 2 √3 cos2 θ + cos θ - 2√3 = 0
⇒ 2cos θ( √3 cos θ + 2) - √3 (√3 cos θ + 2) = 0
⇒ (2cos θ - √3 ) (√3 cos θ + 2) = 0
⇒ (2cos θ - √3 ) (√3 cos θ + 2) = 0 .
Either, 2 cos θ - √3 = 0
⇒ 2cos θ = √3
⇒ cos θ =
⇒ cos θ = cos 30° or cos(360° - 30°)
∴ θ = 30° or 330°
OR, √3 cos θ + 2 = 0
⇒ cos θ = -2/√3 (Impossible).
Thus, the value of θ is 30° or 330°.
.