Wednesday, October 3, 2018

Limit And Continuity

1. Define limit of a function at a point.
Ans: The limit of a function at a point k in its domain (if it exists) is the value that the function approaches as its argument approaches k.

2. Write the notational representation of 'x approches to 5.
Ans: Here, 
    The   notational representation of 'x approches to 5 is  x ⟶ 5.

3. What is meaning of   x ⟶ a ?
Ans: Meaning of  x ⟶ a is   'x approches to a' or 'x tends to a'.

4. What do you understand by indeterminate form?
Ans: In limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits;
if the expression obtained after this substitution does not give enough information to determine the original limit, it is said to take on an indeterminate form.
Which is also called ∞ .

5. Evaluate the following limit:
        
limx4(10x2) 
Solution: Here,
   ⁡limx4(10x2)
=  10 ⨯ 42
= 160.

6. 
Calculate:
limx1(5 - x2).
Solution: Here, 
  ⁡limx1(5 - x2)

= 5 - 12
= 5 - 1
= 4.

7. 
Evaluate the following:
       limx-2(10 - x3).
Solution: Here,
       limx-2(10 - x3)
=  10 - (-2)3
= 10 - (-8)
= 10 + 8
= 18.

8. 
Calculate:
            
  
limx2(x
- 4)
Solution: Here, 
        limx2(x2- 4)
= 22 - 4

= 4 - 4
= 0.

9. 
Evaluate the following limit:
              limx-1(40 - 50x4).
Solution: Here, 

         
limx-1(40 - 50x4
)
           = 40 - 50(-1)4
           = 40 - 50 
           = - 10.
 
10. 
Evaluate :  limxa(ax2).
Solution: Here,
   limxa(a2 - x2)
= a2 - a2
= 0.

11. 
Calcultae the value of :  
limx-a(10x2
- 5a2).
Solution: Here,
      ⁡limx- a (10x2-5a2)
= 10(-a)2 - 5a2
= 10a2 - 5a2
= 5a2.

12. 
Evaluate the following limit:
limx- 3 f(x)   : f(x) = (x310x2- x +5). 
Solution: Here, 
limx- 3 f(x)     : f(x) = x310x2- x + 5
          = 

limx-3 (x3 - 10x2
- x +5)
          = (-3)3 - 10(-3)2 -(-3) + 5
          = - 27 - 30 + 3 + 5
          = -49.

13. 
Evaluate : 
limx5(x3 -10x2
).
Solution: Here,
        limx5(x3 - 10x2).
   =    (5)3 - 10(5)2
   = 125 - 250
   =  - 125.










 


14. Evaluate the following:
  lim     x-1
x3 + 1  x + 1

Solution: 
Here,  lim     x-1x3 + 1  x + 1
      
15. 
Calculate: limx→4x2 - 4x- 4

16. 
Evaluate :  limx-1x3 - 1+ 1.

17. 
Calculate:    limx→3 x2 - 9x2 - 3x


18. 
Find the value of f(x) =    x2 + 1x3 + 1   at  x = 2.
Solution: Here,f(x) =   x2 + 1x3 + 1
At x = 2,
f(2) =   22 + 123 + 1 
       =   59 .

19.  Evaluate : 
limx→ k x3 + k3+ k .
Solution: Here, limxx3 + k3+ k
   =     k3+ k3 k + k 
    =      2k32k
    =   k2.

20. 
Evaluate , limx→-x3 + k3+ k
Solution: 

21. 
Examine whether the following functions are defined or not at the point  x = 2. If defined , find the value.
f(x) = 
1- 2 + 6x8 - x3 
Solution: Here, f(x) = 
1- 2 + 6x8 - x3 
At x = 2,
  f(2) = 1 2 - 2 + 6(2) 8 - 23
       = 10 + 120
      = ∞ + ∞
      = ∞, which is infinite number.
Thus, f(x) is not defined at x  = 2.

22. 
Examine whether the following functions are defined or not at the point  x = 5. If defined , find the value.
f(x) = 
(x + 1)4 - 1x
Solution: Here, f(x) = 
(x + 1)4 - 1x
At x = 5,
  f(5) = (5 + 1)4 - 15
        = 6- 15
       = 12955
       = 259 , which is finite number.
Thus f(x) is defined at x = 5 and the value of function at x = 5 is 259.

23. 
Find : limx35x2 by using table.
Solution: Let f(x) = 5x2  & a = 3.
We choose the values of x close to 3.
 
        xf(x) = 5x2
      2.9       5 ⨯ 2.92 = 42.05
      2.99       5 ⨯ 2.992 = 44.701
     2.999       5 ⨯ 2.9992 = 44.97
   ..........  ......................  ?
     3.0001       5 ⨯ 3.00012 = 45.003
     3.001      5 ⨯ 3.0012 = 45.03
     3.01       5 ⨯ 3.012 = 45.301

From the table, we infer that;
As   x ⟶ 3, f(x) ⟶45.
Therefore, 
          limx35x2 = 45.
Thus, the required limit is 45.

24. 
Find: 
lim  x2x2 - 4  x - 2
 ; by using table.
Solution: Here, 
    Let  f(x) = limx2x2 - 4- 2    and a = 2.
x = 2 makes the given function indeterminate( 0 / 0) form.
We cjoose the values of x close to 2.
 
      x  f(x) = (x2 - 4) / (x - 2)
   1.99    3.99
   1.999     3.999
   1.9999     3.9999
    .............(2)    ..............?      (4)
     2.0001     4.0001
     2.001     4.001
     2.01     4.01

As  x ⟶ 2, then f(x) ⟶ 4.
Thus,  limx2x2 - 4- 2 = 4.

25. 
Fill the table given below and also find the limiting value of function f(y) = y - 1y2 + 1  at y⟶2.
 
 y 1.991.9991.99992.000012.00012.001
f(y) .......................................
Solution: Here,  
f(y) = y - 1y2 + 1   
Now, completing the table;
 y 1.991.9991.99992.000012.00012.001
f(y) 0.19960.199940.1999990.2000040.20004.0.2004
From the table, 
Limiting value of f(y) at y = 2 is 0.2.

26. 
Given that: f(x) =  x2 - 4x - 2 
a) Does f(2) represent a real number?
b) What are the values of f(x) at x = 1.9, 1.09 & 1.009?
Solution: Here,
     f(x)  = x- 4x- 2 
When, x = 2,
    f(2) = 22 - 42 - 2
          
 = 4 - 4 2 - 2
          
 = 0 0  , (Indeterminate form) which is not a real number.

b) When, x = 1.9, 
     f(1.9)  =  3.9.
When,  x = 1.09,
    f(1.09) = 3.09.
When, x = 1.009
    f(x) = 3.009.