Sunday, October 28, 2018

Class 9: Trigonometry (Compound Angles)

The proved trigonometric statements are also benificial to the students of 10th standard also...


1. Prove that: 
Tan(A + B) TanA+TanB1-TanA TanB 

Proof: 
LHS = Tan(A + B)
         = Sin(A + B)Cos(A + B)  
       = SinACosB+CosASinBCosACosB - SinASinB
        =  SinACosBCosACosB+ CosASinBCosACosBCosACosBCosACosB-SinASinBCosACosB   [ ∵ Dividing Numerator & denominator by CosACosB & seperating LCM.]
      =TanA+TanB1-TanA TanB
       = RHS.
                    Proved.

2. Prove that : 
Tan(A - B) =TanA-TanB1+ TanA TanB
Proof: Here, 
LHS  = Tan(A - B) 
        =Sin(A - B)Cos(A - B)
        =SinACosB - CosASinBCosACosB + SinASinB 
        = SinACosBCosACosB- CosASinBCosACosBCosACosBCosACosB+SinASinBCosACosB   [ Dividing numerator & denominator by CosACosB.]
       =TanA-TanB1+TanA TanB
        = RHS.
Proved.

3. Prove that: 
Cot(A + B)  =CotACotB-1CotB+CotA .
Proof: LHS = Cot(A + B)
        = Cos(A+B)Sin(A+B)
       =CosACosB- SinASinBSinACosB + CosASinB 
       =   CosACosB SinASinB- SinASinBSinASinBSinACosBSinASinB+CosASinBSinASinB  [∵ Dividing numerator and denominator by SinASinB & Seperating LCM.]
      CotACotB-1CotB+CotA
       = RHS.
Proved.
Alternatively, you can also prove it by the formula of tan(A+B).

4. Prove that:
 Cot(A - B)  =CotACotB+1CotB-CotA .
Proof: LHS = Cot(A-B)
       =Cos(A-B)Sin(A-B) 
      =CosACosB+SinASinBSinACosB - CosASinB
     = CosACosB SinASinB+ SinASinBSinASinBSinACosBSinASinB-CosASinBSinASinB [ ∵ Dividing numerator & denominator by SinASinB & seperating LCM.]
    =CotACotB+1CotB-CotA
     = RHS.
Proved.
Alternatively, you can also prove it by the formula of tan(A-B).

5. Prove that: 
Sin(A+B).Sin(A-B) = Cos2B - Cos2A.
Proof: LHS = Sin(A+B).Sin(A-B)
         = ( SinACosB + CosASinB)(SinACosB - CosASinB)
         = (SinACosB)2 - (CosASinB)2
         = Sin2ACos2B - Cos2ASin2B
         = ( 1- Cos2A)Cos2B - Cos2A(1 - Cos2B)
         = Cos2B - Cos2ACos2B - Cos2A + Cos2ACos2B
         =  Cos2B - Cos2A.
         = RHS.
Proved.

6. Prove that : 
Sin(A+B).Sin(A-B) = Sin2A - Sin2B.
Proof: Here,
LHS = sin ( A + B ) ⋅ sin ( A − B )
        = ( sinA cosB + cosA sinB ) ( sinA cosB − cosA sinB )
        = ( sinA cosB )2 − ( cosA sinB )2    [Using the identity ( p + q ) ( p − q ) = p 2 − q 2 .]
        = sin2A cos2B − sin2B cos2A
        = sin2A ( 1 − sin2B ) − sin2B ( 1 − sin2A )
        = sin2A − sin B − sin2A sin2B + sin2B sin2A
        = sin2A − sin2B.
        = RHS.
Proved.

7. Prove that : 
cos(A+B).cos(A-B) = Cos2A - Sin2B.
Proof: Here,
LHS =  cos(A+B).cos(A-B)
        = (cosAcosB - sinAsinB)(cosAcosB +sinAsinB)
        = (cosAcosB)2 - (sinAsinB)2
        = cos2Acos2B - sin2Asin2B
        = Cos2A( 1 - Sin2B) - (1 - cos2A)Sin2B
        = Cos2A - Cos2ASin2B - Sin2B + cos2ASin2B
        = Cos2A - Sin2B.
        = RHS 
Proved.

8. Prove that: 
cos(A+B).cos(A-B) = cos2B - sin2A.
Proof: Here,
LHS =  cos(A+B).cos(A-B)
        = (cosAcosB - sinAsinB)(cosAcosB +sinAsinB)
        = (cosAcosB)2 - (sinAsinB)2
        = cos2Acos2B - sin2Asin2B
        = cos2B( 1 - cin2A) - (1 - cos2B)cin2A
        = cos2B - cos2Bsin2A - sin2A + cos2Bsin2A
        = cos2B - sin2A.
        = RHS.
Proved.

9. Prove that: 
cot(A+B).cot(A-B)  =Cot2ACot2B-1Cot2B-Cot2A .
Proof: LHS = cot(A+B).cot(A-B)
        = CotACotB-1CotB+CotACotACotB+1CotB-CotA
       = 
(CotACotB-1)(CotACotB +1)(CotB+CotA)(CotB - CotA)

       =Cot2ACot2B-1Cot2B-Cot2A
        = RHS.
Proved.

10. Prove that: 
tan(A+B).tan(A-B) = tan2A-tan2B1-tan2Atan2B   .
Proof: LHS = tan(A+B).tan(A-B)
                 =tanA+tanB1-tanAtanBtanA-tanB1+tanAtanB
                 =
tan2A-tan2B12-(tanAtanB)2

                 =
tan2A-tan2B1-tan2Atan2B
  
                 = RHS.
Proved.

11. Find the value of cos15o without using calculator or table.
Solution: We know,
 Cos15o = cos(45o - 30o)
              = cos45ocos30o + sin45osin30o
              = 1√2⨉ 
√3 + 12 ⨉1√2 
            
 = √3+12√2
Which is required value of cos15o.

12. If A+B = πc/4, prove that: 
cotAcotB - cotA - cotB = 1.
Proof: We know, πc = 180o
So, A+B = 45o
Operating both sides by cot we get
      cot(A+B) = cot45o    , using formula of cot(A+B), we get
⇒ cotAcotB-1cotB+cotA = 1          [ Since, cot45o = 1.]
⇒ cotAcotB - 1 = cotB + cotA
⇒ cotAcotB - cotA - cotB = 1
       LHS = RHS.
Proved.
Next method :
LHS = 
cotAcotB - cotA - cotB
        = 1 + [cotAcotB - 1] - cotA - cotB
   = 1 + [cotB + cotA] × cotAcotB-1cotB+cotA  - cotA - cotB
   = 1 + [cotB + cotA] × cot(A+B) - cotA - cotB
   = 1 + [cotB + cotA] × 1 - cotA - cotB 
 [cot(A+B) = cot(πc/4) = 1]
   = 1 + cotB + cotA] - cotA - cotB
   = 1 
Proved

13. Prove that: 
sin105° + cos105° = 1√2  

Proof: Here,
 LHS = sin105° + cos105°
         = sin(60o + 45o ) + cos ( 60o + 45o )
         = ( sin 60o cos 45o + cos 60o sin 45o ) + ( cos 60o cos 45o - sin60o sin 45o)
         =  √32 . 1√2 + 12 . 1√2 +  12 . 1√2 -  √32 . 1√2 


 
         = 22√2 
       = 1√2  
       = RHS.
Proved.

14. Prove that:  cot73o.cot28o+1cot73o-cot28o  = 1
Proof: LHS = cot73o.cot28o+1cot73o-cot28o  
    = cot(73o -28o) [ Since, cotA.cotB+1cotB-cotA = cot(A-B).]
    = cot45o
    = 1
     = RHS.
Proved.

15. Prove that: 
cot27o.cot18o - cot27o- cot18o = 1
Proof: Here,
We know,
      27o + 18o = 45o
Operating both side by cot,we get
      Cot(27o+18o) = cot45o
 cot27o.cot18o-1cot27o+cot18o = 1       
[ Since, using formula of cot(A+B) & cot45
o = 1.]
 cot27o.cot18o - 1 = cot27o + cot18o
 cot27o.cot18o- cot27o - cot18o = 1
i.e.  LHS = RHS
Proved.
Next method :
LHS = cot27°cot18º - cot27º - cot18º
        = 1 + [cot27ºcot18º - 1] - cot27º - cot18º
   = 1 + [cot27º + cot18º] × cot27ºcot18º-1cot27º+cot18º  - cot27º - cot18º
    = 1 + [cot27º + cot18º] × cot(18º+27º) - cot27º - cot18º
   = 1 + [cot27º + cot18º] × 1 - cot27º - cot18º 
   = 1 + cot27º + cot18º - cot27º - cot18º
   = 1 
Ptoved
16. Prove that: tan50o + tan60o + tan70o = tan50o.tan60o.tan70o.
Proof: Here,
     50o + 60o + 70o = 180o
⇒ 50o + 60o = 180o - 70o
Operating both sides by tan, we get
     tan(50o + 60o) = tan(180o - 70o)
  tan50o +tan60o1 - tan50o.tan60o = - tan70o        [ Since, using formula of tan(A+B) & tan(180o- A) = -tanA.]
 tan50o + tan60o = -tan70o(1 - tan50o.tan60o)
⇒ tan50o + tan60o = -tan70o + tan50o.tan60otan70o 
 tan50o + tan60o + tan70o = tan50o.tan60otan70o 
∴  LHS = RHS
Proved.

17. Prove that: tan9A - tan6A - tan3A = tan9A.tan6A.tan3A.
Proof: Here,
     3A + 6A = 9A
Operating both sides by tan, we get
     tan( 3A + 6A) = tan(9A)
 tan3A + tan6A1 - tan3A.tan6A = tan9A  [ Since, using formula of tan(A+B).]
 tan3A + tan6A = tan9A(1 - tan3A.tan6A)
 tan3A + tan6A = tan9A - tan3A.tan6A.tan9A 
 tan9A - tan6A - tan3A = tan9Atan6Atan3A.
∴  LHS = RHS
Proved.

18. Prove that : sin(x+y) + sin(x-y) = 2sinxcosy.
Proof: Here,
LHS = sin(x+y) + sin(x-y)
         = sinxcosy + cosxsiny + sinxsiny - cosxcosy
         = sinxcosy + sinxcosy
         = 2sinxcosy
         = RHS.
Proved.

19. If A+B+C = πc & cosA = cosBcosC, prove that tanA =  tanB + tanC.
Proof: LHS = tanA 
        = sinAcosA
       
=
sin[π -(B+C)])cosBcosC       [∵ A= π - (B+C) & cosA = cosBcosC.]
       
=
 sin(B+C)cosBcosC
       
= sinBcosC + cosBsinCcosBcosC
       
=
 sinBcosCcosBcosC +  cosBsinCcosBcosC
       
=
sinBcosB +  sinCcosC 
       = tanB + tanC
       = RHS.
Proved.

20. An angle θ is divided into two parts α & β such that  tanα : tanβ = x : y, then prove that:
sin(α-β)  = x-yx+ysinθ      

Proof:   Here, we have given
     tanα : tanβ = x : y.
  tanαtanβ  xy 
By using componendo & dividendo , we have
      
 tanα + tanβtanα - tanβ = x+yx - y
Converting into sin & cos we get
     sinαcosβ + cosαsinβsinαcosβ - cosαsinβ = x + yx - y
  
 sin(α+β)sin(α - β) = x+yx - y
  sinθsin(α-β) = x+yx - y               [ Since, α+β = θ.]
 sin(α-β)  =
 x-yx+ysinθ          
Proved.                       

21. Prove that:  
sinA + sin(A+2π3) + sin(A+ 4π3) = 0

Proof: Here,
LHS = sinA + sin(A+2π3) + sin(A+ 4π3)     
Now, put π = 180o, we get
        = sinA + sin(A+ 120o ) + sin(A+  240o )     
        = sinA + sinAcos120o + cosAsin120o + sinAcos240o+cosAsin120o
        = sinA + sinA(- 12) + cosA(√32) + sinA(- 12) + cosA(-√32)
        = sinA - 12 sinA - 12 sinA
        = sinA - sinA
        = 0
       = RHS
Proved.

22. sin2(π6 + θ) - sin2(π6 - θ)  √32 sin2θ 
Proof: Here, 
LHS = sin2(π6 + θ) - sin2(π6 - θ)  
        = sin2( 30o + θ) - sin2( 30o - θ)                 
[ Since, π = 180
o.]
        = sin(30o+θ + 30o-θ) . sin(30o+θ-30o+θ)       
 [ Since, sin
2A - sin2B = sin(A+B).sin(A-B).]
        = sin60o .sin2θ
        = √32 sin2θ 
        = RHS
Proved.

23. If tanA = 56 & tanB=2π3, prove that prove that,
A+B =  πc4 

Proof: We know,
 tan(A+B) = tanA+tanB1 - tanAtanB
                 = 56+1111- 56×111
                 =56665666
                 = 1
                 = tan45o
 tan(A+B) = tan π4 
 
 So, A+B =  πc4 
Proved.

24. 
In any quadrilateral ABCD, prove that  
cosAcosB - cosCcosD =  sinAsinB - sinCsinD.
Proof: We know,
           ABCD is a quadrilateral.
Then
      A+B+C+D = 360o 
  A+B = 360 - (C+D)
Operating both sides by cos,
     cos(A+B) = cos{360 -(C+D)}         
Using formula,we get
 cosAcosB - sinAsinB = cosCcosD - sinCsinD    [ Since, cos(360 -θ) = cosθ.]
  cosAcosB - cosCcosD =  sinAsinB - sinCsinD
      LHS = RHS
Proved.