1. Prove that:
Tan(A + B)
Proof: LHS = Tan(A + B)
=
=
= RHS.
Proved.
2. Prove that :
Tan(A - B) = TanA - TanB 1+ TanA TanB
Proof: Here, LHS = Tan(A - B)
=
= RHS.
Proved.
3. Prove that:
Cot(A + B) = CotACotB - 1 CotB + CotA .
Proof: LHS = Cot(A + B)=
=
= RHS.
Proved.
Alternatively, you can also prove it by the formula of tan(A+B).4. Prove that:
Cot(A - B) = CotACotB + 1 CotB - CotA .
Proof: LHS = Cot(A-B)=
= RHS.
Proved.
Alternatively, you can also prove it by the formula of tan(A-B).5. Prove that:
Sin(A+B).Sin(A-B) = Cos2B - Cos2A.
Proof: LHS = Sin(A+B).Sin(A-B)= ( SinACosB + CosASinB)(SinACosB - CosASinB)
= (SinACosB)2 - (CosASinB)2
= Sin2ACos2B - Cos2ASin2B
= ( 1- Cos2A)Cos2B - Cos2A(1 - Cos2B)
= Cos2B - Cos2ACos2B - Cos2A + Cos2ACos2B
= Cos2B - Cos2A.
= RHS.
Proved.
6. Prove that :
Sin(A+B).Sin(A-B) = Sin2A - Sin2B.
Proof: Here,LHS = sin ( A + B ) ⋅ sin ( A − B )
= ( sinA cosB + cosA sinB ) ( sinA cosB − cosA sinB )
= ( sinA cosB )2 − ( cosA sinB )2 [Using the identity ( p + q ) ( p − q ) = p 2 − q 2 .]
= sin2A cos2B − sin2B cos2A
= sin2A ( 1 − sin2B ) − sin2B ( 1 − sin2A )
= sin2A − sin B − sin2A sin2B + sin2B sin2A
= sin2A − sin2B.
= RHS.
Proved.
7. Prove that :
cos(A+B).cos(A-B) = Cos2A - Sin2B.
Proof: Here,LHS = cos(A+B).cos(A-B)
= (cosAcosB - sinAsinB)(cosAcosB +sinAsinB)
= (cosAcosB)2 - (sinAsinB)2
= cos2Acos2B - sin2Asin2B
= Cos2A( 1 - Sin2B) - (1 - cos2A)Sin2B
= Cos2A - Cos2ASin2B - Sin2B + cos2ASin2B
= Cos2A - Sin2B.
= RHS
Proved.
8. Prove that:
cos(A+B).cos(A-B) = cos2B - sin2A.
Proof: Here,LHS = cos(A+B).cos(A-B)
= (cosAcosB - sinAsinB)(cosAcosB +sinAsinB)
= (cosAcosB)2 - (sinAsinB)2
= cos2Acos2B - sin2Asin2B
= cos2B( 1 - cin2A) - (1 - cos2B)cin2A
= cos2B - cos2Bsin2A - sin2A + cos2Bsin2A
= cos2B - sin2A.
= RHS.
Proved.
9. Prove that:
cot(A+B).cot(A-B) = Cot2ACot2B - 1 Cot2B - Cot2A .
Proof: LHS = cot(A+B).cot(A-B)=
=
= RHS.
Proved.
10. Prove that:
tan(A+B).tan(A-B) = tan2A - tan2B 1 - tan2Atan2B .
Proof: LHS = tan(A+B).tan(A-B)=
=
= RHS.
Proved.
11. Find the value of cos15o without using calculator or table.
Solution: We know,
Cos15o = cos(45o - 30o)
= cos45ocos30o + sin45osin30o
=
Which is required value of cos15o.
12. If A+B = πc/4, prove that:
cotAcotB - cotA - cotB = 1.
Proof: We know, πc = 180oSo, A+B = 45o
Operating both sides by cot we get
cot(A+B) = cot45o , using formula of cot(A+B), we get
⇒
⇒ cotAcotB - 1 = cotB + cotA
⇒ cotAcotB - cotA - cotB = 1
LHS = RHS.
Proved.
Next method :LHS = cotAcotB - cotA - cotB
= 1 + [cotAcotB - 1] - cotA - cotB
= 1 + [cotB + cotA] ×
= 1 + [cotB + cotA] × cot(A+B) - cotA - cotB
= 1 + [cotB + cotA] × 1 - cotA - cotB
[cot(A+B) = cot(πc/4) = 1]
= 1 + cotB + cotA] - cotA - cotB= 1
Proved
13. Prove that:
sin105° + cos105° =
Proof: Here,
LHS = sin105° + cos105°
= sin(60o + 45o ) + cos ( 60o + 45o )
= ( sin 60o cos 45o + cos 60o sin 45o ) + ( cos 60o cos 45o - sin60o sin 45o)
=
=
=
= RHS.
Proved.
Proof: LHS =
= cot(73o -28o) [ Since,
= cot45o
= 1
= RHS.
Proved.
15. Prove that:
cot27o.cot18o - cot27o- cot18o = 1
Proof: Here,We know,
27o + 18o = 45o
Operating both side by cot,we get
Cot(27o+18o) = cot45o
⇒
[ Since, using formula of cot(A+B) & cot45o = 1.]
⇒ cot27o.cot18o - 1 = cot27o + cot18o
⇒ cot27o.cot18o- cot27o - cot18o = 1
i.e. LHS = RHS
Proved.
Next method :LHS = cot27°cot18º - cot27º - cot18º
= 1 + [cot27ºcot18º - 1] - cot27º - cot18º
= 1 + [cot27º + cot18º] ×
= 1 + [cot27º + cot18º] × cot(18º+27º) - cot27º - cot18º
= 1 + [cot27º + cot18º] × 1 - cot27º - cot18º
= 1 + cot27º + cot18º - cot27º - cot18º
= 1
Ptoved
16. Prove that: tan50o + tan60o + tan70o = tan50o.tan60o.tan70o.
50o + 60o + 70o = 180o
⇒ 50o + 60o = 180o - 70o
Operating both sides by tan, we get
tan(50o + 60o) = tan(180o - 70o)
⇒
⇒ tan50o + tan60o = -tan70o(1 - tan50o.tan60o)
⇒ tan50o + tan60o = -tan70o + tan50o.tan60otan70o
⇒ tan50o + tan60o + tan70o = tan50o.tan60otan70o
∴ LHS = RHS
Proved.
17. Prove that: tan9A - tan6A - tan3A = tan9A.tan6A.tan3A.
Proof: Here,
3A + 6A = 9A
Operating both sides by tan, we get
tan( 3A + 6A) = tan(9A)
⇒
⇒ tan3A + tan6A = tan9A(1 - tan3A.tan6A)
⇒ tan3A + tan6A = tan9A - tan3A.tan6A.tan9A
⇒ tan9A - tan6A - tan3A = tan9Atan6Atan3A.
∴ LHS = RHS
Proved.
18. Prove that : sin(x+y) + sin(x-y) = 2sinxcosy.
Proof: Here,
LHS = sin(x+y) + sin(x-y)
= sinxcosy + cosxsiny + sinxsiny - cosxcosy
= sinxcosy + sinxcosy
= 2sinxcosy
= RHS.
Proved.
19. If A+B+C = πc & cosA = cosBcosC, prove that tanA = tanB + tanC.
Proof:
= tanB + tanC
= RHS.
Proved.
Proof: Here, we have given
tanα : tanβ = x : y.
By using componendo & dividendo , we have
Converting into sin & cos we get
⇒
⇒ sin(α-β) =
21. Prove that:
sinA + sin(A+
Proof: Here,
LHS = sinA + sin(A+
Now, put π = 180o, we get
= sinA + sin(A+ 120o ) + sin(A+ 240o )
= sinA + sinAcos120o + cosAsin120o + sinAcos240o+cosAsin120o
= sinA + sinA(-
= sinA -
= sinA - sinA
= 0
= RHS
Proved.
22. sin2(
Proof: Here,
LHS = sin2(
= sin2( 30o + θ) - sin2( 30o - θ)
[ Since, π = 180o.]
= sin(30o+θ + 30o-θ) . sin(30o+θ-30o+θ)
[ Since, sin2A - sin2B = sin(A+B).sin(A-B).]
= sin60o .sin2θ
=
= RHS
Proved.
23. If tanA =
A+B =
Proof: We know,
tan(A+B) =
=
=
= 1
= tan45o
tan(A+B) = tan
Proved.
24.
In any quadrilateral ABCD, prove that
cosAcosB - cosCcosD = sinAsinB - sinCsinD.
ABCD is a quadrilateral.
Then
A+B+C+D = 360o
⇒ A+B = 360 - (C+D)
Operating both sides by cos,
cos(A+B) = cos{360 -(C+D)}
Using formula,we get
⇒ cosAcosB - sinAsinB = cosCcosD - sinCsinD [ Since, cos(360 -θ) = cosθ.]
⇒ cosAcosB - cosCcosD = sinAsinB - sinCsinD
LHS = RHS
Proved.