Solution: We have
15° = 60° - 45°
Now, Operating both sides by btan,
tan15° = tan (60° - 45° )
=
=
=
=
=
=
=2 -
Thus, tan15° = 2 -
Proved.
2.
Find the value of sin 75° without using calculator or trigonometric table value.
Solution:
Sin 75° = Sin (30° + 45°)= Sin30° cos 45°+ cos30° Sin 45°
=
∴ Sin 75° =
3.
Without using calculator or table, find the value of sin 105°.
Solution:
sin105° = sin (60° + 45°)
= sin 60° cos45°+ cos 60°.
sin105° =√3 2 × 1 √2 + 1 2 × 1 √2
=√3 + 1. 2 √2
= sin 60° cos45°+ cos 60°.
sin105° =
=
4.
Prove that: sin 15° = √3 - 1 2 √2
Proof: Here,
LHS = sin 15°
= sin (45°-30°)
= sin 45° cos 30° - cos 45°sin30o
=
= RHS.
Proved.
5.
Prove that: cot 22°. cot 23° - cot 22° - cot 23° = 1
Proof:
We have
22°+ 23° = 45
Taking cot on both the sides;
cot(22°+ 23°) = cot 45°
⇒cot cot 22 ° + cot cot 23 ° - 1 cot cot 23 ° + cot cot 22 ° =1
⇒ cot22°.cot 23°-1 = cot 23°+cot 22°
∴ cot 22°cot 23° - cot 23°-cot 22° =1.
22°+ 23° = 45
Taking cot on both the sides;
cot(22°+ 23°) = cot 45°
⇒
⇒ cot22°.cot 23°-1 = cot 23°+cot 22°
∴ cot 22°cot 23° - cot 23°-cot 22° =1.
Proved.
6.
Find the value of sin 75° Without using calculator or a trigonometric table
solution:
Sin 75° = Sin (45°+30°)= Sin 45° cos 30°+Sin30° cos 45°
=
=
=
∴ Thus, the value of sin 75° is
7.
Prove that: tan20° + tan25° + tan20°.tan25° = 1
Proof: we have
20° + 25° = 45°.Taking tan on both the sides then,
tan (20° + 25°) = tan 45°
⇒
⇒
Proved.
8.
Prove that: 2tan50° + tan20° = cot20°
Proof: we have,
50° + 20° = 70°.Taking tan on both the sides, then
tan (50° + 20°) = tan 70°
⇒
⇒
⇒
⇒
⇒ 2 tan50° +tan20° = cot20°
Proved.
9.
If tanA=5/6 and tanB=1/11, prove that:A+B=45°
Proof: Here,
We have given;tan A=
Now, tan( A+B) =
=
=
=
∴ tan (A+B) = 1
i.e. tan (A+B) =
Thus, (A+B) =