Friday, October 26, 2018

See Opt Maths: Compound Angles

1. Without using calculator or table, prove that:  tan 15° = 2 - √3
Solution: We have
    15° = 60° - 45°
Now, Operating both sides by btan,
    tan15° = tan (60° - 45° )
                =tantan 60° - tan tan 45°1+ tantan 60°. tan tan 45°       [ Using formula of tan(A+B).]
                = √3-11+ √3.1
                =√3-13+1 × √3-13-1
                = 3-2√3 + 1
3-1
 
                =4-2√32
                = 2(2-√32)

               =2 - √3.

Thus, tan15° = 2 - √3.
Proved.

2. 
Find the value of sin 75° without using calculator or trigonometric table value.
Solution:  
Sin 75° = Sin (30° + 45°)
             = Sin30° cos 45°+ cos30° Sin 45°
             =12 ×1√2 + √32×1√2
∴ Sin 75° =  1+√3.2√2

3. 
Without using calculator or table, find the value of sin 105°.
Solution: 
sin105° = sin (60° + 45°)
             = sin 60° cos45°+ cos 60°.
sin105° = √32×1√2 + 12 × 1√2
             = √3+1.2√2

4. 
Prove that: sin 15° = √3-12 √2

Proof: Here,

LHS  = sin 15°
         = sin (45°-30°)
         = sin 45° cos 30° - cos 45°sin30o
        =12× √32 - 1√2 × 12
        = √3-12 √2
        = RHS.
Proved.

5. 
Prove that: cot 22°. cot 23° - cot 22° - cot 23° = 1
Proof: 
We have
           22°+ 23° = 45
Taking cot on both the sides;
            cot(22°+ 23°) = cot 45°
⇒       cotcot 22°+cotcot 23°-1cotcot 23°+ cotcot 22° =1
⇒      cot⁡22°.cot⁡ 23°-1 = cot⁡ 23°+cot⁡ 22°
∴         cot⁡ 22°cot⁡ 23° - cot⁡ 23°-cot⁡ 22° =1.
  Proved.

6. 
Find the value of sin 75° Without using calculator or a trigonometric table 
solution: 
Sin 75° = Sin (45°+30°)
             = Sin 45° cos 30°+Sin30° cos 45°
             = 12×√32+12 × 1√2
             = √32√2 + 12√2
             = √3+12√2
∴ Thus, the value of sin 75° is √3+1.2√2

7. 
Prove that: tan20° + tan25° + tan20°.tan25° = 1
Proof: we have
      20° + 25° = 45°.
Taking tan on both the sides then,
       tan (20° + 25°) = tan 45°
  tan 20° + tan 25° 1-tan 20° tan 25° =1
⇒   tan20° + tan 25° = 1- tan20° tan 25°
 tan20° + tan 25°tan20° tan 25° = 1.
Proved.

8. 
Prove that: 2tan50° + tan20° = cot20°
Proof: we have,
      50° + 20° = 70°.
Taking tan on both the sides, then
      tan (50° + 20°) = tan 70°
⇒ tan50° +tan20°1-tan50° tan20° = tan (90° - 20°)             
⇒  tan50° +tan20°1-tan50° tan20° = cot 20°
⇒  tan50°+tan20° = cot 20° - tan50° +tan20° cot 20°
⇒ tan50° +tan20° = cot 20° - tan50°
⇒ 2 tan50° +tan20° = cot20° 
Proved.

9. 
If  tanA=5/6 and tanB=1/11, prove that:A+B=45°
Proof: Here,
We have given;
tan A= 56 and tan B = 111
Now,  tan( A+B) = tanA+tanB1- tanA.tanB
                                          = 56+1111- 56×111
                                          = 5×11+1×66666-566
                                          =61666166
                     tan (A+B) = 1
              i.e.    tan (A+B) = πc4 .
Thus, (A+B) = πc4 this completes the proof.