1. If tan A = m & tan B =
Solution: Here,
tanA= m and tanB=
We know that, tan (A+B) =
=
=
= ∞
∴ tan (A+B) = ∞
i.e. tan (A+B) = tan 90°
∴ (A+B) = 90°.
Thus, the value of (A+B) is 90°
2. If tan A/
Solution: Here,
Tan
We have
Sin A =
=
=
=
=
=
Thus, the value of sinA is
3. If sin A/
Solution: Here,
Sin A =
We have,
Sin A = 3sin
=3
=
=
=
Thus, the value of sin A is
4. If sin A =
Solution: Here,
sin A =
We have,
sin 3A = 3 sin A- 4 sin3 A
= 3 ×
=
= 1.
Thus, the value of sin 3A is 1.
5. Prove that :
RHS =
=
=
=
=
= tan
= LHS .
Proved.
6. Prove that: cot A/
Proof: Here,
LHS = cot
= cot
=
= 2 ×
= 2 cot A
= RHS.
Proved
7. Prove that :
LHS =
=
=
= cot
= RHS .
Proved.
8. Prove that: cosec θ - cot θ = tan θ/2
Proof: Here,
LHS:
= cosec θ - cot θ
=
=
=
=
= tan
= RHS .
Proved.
9. If cos
Solution: Here,
cos
So, sin
= sqrt [
= sqrt [
=
We know that,
sin∝ = 3 sin
= 3 ×
=
= 0.
∴ sin ∝ = 0
Thus, the value of sin ∝ = 0.
10. Prove that: cosec 2θ - cot 2θ = tan θ
Proof: Here,
LHS = cosec 2θ - cot 2θ
=
=
=
=
= tan θ
= RHS .
Proved.
11. Prove that:
LHS =
=
=
=
= tanθ
= RHS.
Proved.
12. Prove that:
Proof: Here,
LHS =
=
=
=
=
=
= tan4θ.
= tan4θ. cotθ
= RHS.
Proved
14.
Prove that: 8 (sin6p + cos6p) = 5 + 3 cos4p
Proof: Here,
LHS = 8 (sin6 p + cos6 p) = 8 [(cos2 p)3] + [(sin2 p)3 ]
= 8 [(cos2 p + sin2 p)3] - 3 cos2 p sin2 p (cos2p +sin2 p )]
= 8 [ 1 - 3 cos2 p sin2 p × 1 ]
= 8-6 (2 sin p cos p) 2
= 8 -6(sin 2p) 2 ]
= 8- 6 sin 2 2p
= 8 - 3 (2 sin2 2p )
= 8 - 3 [1 - cos 4p]
= 8 – 3 + 3 cos 4p
= 5 + 3 cos 4p
= RHS.
Proved.
15. 1 + sin ∝ - cos ∝ 1 + sin ∝ + cos ∝ = tan ∝ 2
Prove that:
Proof: Here,
RHS = =
=
=
=
= tan
= LHS.
Proved.
16.
Prove that:
tanθ + 2 tan2θ + 4 cot4θ = cot θ
tanθ + 2 tan2θ + 4 cot4θ = cot θ
Proof: Here,
LHS = tanθ + 2 tan 2θ + 4 cot 4 θ= tan θ + 2 tan 2θ +
= tanθ+ 2 tan 2θ +
= tan θ +
= tan θ +
= tan θ +
= tan θ +
= tan θ +
=
=
= cot θ
= RHS.
Proved.
17.
Prove that:
cos3 A.cos 3A + sin3 A.sin 3A = cos3 2A.
cos3 A.cos 3A + sin3 A.sin 3A = cos3 2A.
Proof: Here,
LHS = cos3A.cos 3A + sin3 A.sin 3A=
We have,
cos3A=4cos3A - 3cosA Þ 4cos3A = cos3A + 3cosA
and sin3A=3sinA - 4sin3A Þ 4sin3A = 3 sinA - sin3A
So
=
=
=
=
=
=
=
=
= cos3 2A
= RHS.
Proved.
18.
Prove that:
cos2 A+ sin2 A.cos 2B = cos2 B+ sin2 B. cos 2A
cos2 A+ sin2 A.cos 2B = cos2 B+ sin2 B. cos 2A
Proof: Here,
LHS = cos2A+ sin2A.cos2B = cos2A+ sin2A(1 - 2sin2B)
= cos2A+ sin2A - 2sin2A.sin2B)
= 1- 2 sin2A. sin2B
= 1- (1- cos 2A) sin2 B
= 1- sin2 B + sin2 B cos 2A
= cos2 B + sin2 B. cos 2A
= RHS.
Proved.
19. Prove that:
cos3θ . cos3θ + sin3θ . sin3θ = cos32θ
Proof: Here,
LHS = cos3θ . cos 3θ + sin3 θ . sin 3θ.We have,
cos 3θ = 4cos3 θ - 3 cos θ
i.e 4cos3 θ = cos3θ + 3 cos θ
∴ cos3θ =
and sin 3θ = 3sin θ - 4 sin3 θ
i.e. 4 sin3θ = 3sin θ - sin 3θ
∴ sin3θ=
Now,
LHS =
=
=
=
=
=
=
=
= cos3 2θ.
=RHS .
Proved.
20.
Prove that:
8 ( 1 + sinπc 8 ) ( 1 + sin 3πc 8 ) ( 1 - sin 5πc 8 ) ( 1 - sin 7πc 8 ) = 1
8 ( 1 + sin
Proof: Here,
LHS = 8 ( 1 + sin = 8 ( 1 + sin
= 8 ( 1 - sin2
=
= 8 cos2
= 8 cos2
= 2 × 4 cos2
= 2(2cos
= 2(sin 2 ×
= 2 sin 2
= 2 × sin2 45°
= 2 ×
= 2
= 1.
= RHS .
Proved
21. Prove that:3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = 13.
Proof: LHS= 3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x)
= 3 [(sin x – cos x)2]2 + 6(sin2x + cos2x + 2 sin x cos x) + 4 [(sin2x)3 + (cos2x)3]
= 3 [sin2x + cos2x – 2 sin x cos x]2 + 6(1 + 2 sin x cos x) + 4 [(sin2x + cos2x) (sin4x + cos4x – sin2x cos2x)]
= 3 [1 – 2 sin x cosx)2 + 6 + 12 sin x cos x + 4 [(sin2x)2 + (cos2 x)2 + 2 sin2x cos2x – 3 sin2 x cos2x]
[ using: sin 2 x + cos 2 x = 1]
= 3 [1 + 4 sin2x cos2x – 4 sin x cos x)] + 6 + 12 sinx cos x + 4 [(sin2x + cos2 x)2 – 3 sin2x cos2x]
= 3 + 12 sin2 x cos2x – 12 sin x cos x + 6 + 12 sin x cos x + 4 – 12 sin2x cos2x
= 13
= RHS.
Proved.
22. Prove that: 8 sin4A = 3 - 4 cos2A + cos4A.
Proof: Here,
RHS = 3 - 4 cos2A + cos4A.
= 3 - 4(1 - 2sin2A) + 2cos22A - 1
= 2 - 4 + 8sin2A + 2(1 - 2sin2A)2
= - 2 + 8sin2A + 2( 1 - 4sin2A + 4sin4A)
= - 2 + 8sin2A + 2 - 8sin2A + 8sin4A
= 8sin4A
= LHS.
Proved.
23. Prove that : cos6A - sin 6A = cos2A(1- ¹/₄ sin²2A).
Proof: LHS = cos6A - sin 6A
= (cos2A)3 - (sin2A)3
= ( cos2A - sin2A) [ ( cos2A)2 + cos2A.sin2A + (sin2A)2]
= cos2A [ (cos2A + sin2A)2 - 2cos2A.sin2A + cos2A.sin2A]
= cos2A [ (1)2 - cos2A.sin2A]
= cos2A [ 1 -
= cos2A (1 -
= RHS.
Proved.
24. Prove that:
cos8A + sin 8A = 1 - sin22A+ ¹/₈ sin42A.
Proof: Here, LHS = cos8A + sin 8A
= (cos4A)2 + (sin 4A)2
= (cos4A - sin 4A)2+ 2cos4A.sin4A
=[ ( cos2A + sin2A) ( cos2A - sin2A)]2 + 2cos4A.sin4A
= ( cos2A - sin2A)2 + 2cos4A.sin4A
= cos22A +
= 1 - sin22A +
= RHS.
Proved.
25. Prove that:
sin5A = 16sin5A - 20sin3A + 5sinA.
Proof:
We have,
Sin (A + B) = sin A cos B + cos A sin B
Putting B = 4A we get
sin 5A = sin ( A + 4 A)
= sin A cos 4A + cos A sin 4A
= sin A (1- 2 Sin2 2A) + cos A .2Sin 2A cos 2A
( Since, putting cos 2x = 1 – 2 sin2 x and sin 2x = 2 sin x cos x and x = 2A)
= sin A(1- 8 Sin2 A cos2 A) + Cos A .4 Cos A sin A (1- 2 Sin2 A)
( Since, putting cos 2x = 1 – 2 sin 2 x and sin 2x = 2 sin x cos x and x = A)
= sin A - 8 sin 3A (1-sin2 A) + 4 sin A Cos2A(1- 2 sin2 A)
= sin A - 8 sin3 A + 8 Sin5 A + 4 sin A(1-sin2A)(1-2 Sin2 A)
= sin A - 8 sin3 A + 8 sin5 A + 4 sin A ( 1- 3 sin2A + 2 Sin4 A)
= 5 sin A - 20 sin3A + 16 sin5A.
= 16sin5A - 20sin3A + 5sinA.
= RHS.
Proved.