1. If cosθ = 4, find the value of sinθ and tanθ.
Solution: Here, cosθ = 45Now,sinθ = √1-cos2θ = 35 (find yourself)
Again tanθ = sinθcosθ = 3545 = 35× 54
=
34
Thus, the value of sinθ and tanθ are 35 and 34 respectively.
2. Prove that:
tanθ+ secθ-1tanθ-secθ+ 1 = 1+sinθcosθ
Solution: LHS = tanθ+ secθ-1tanθ-secθ+ 1
= tanθ+ secθ-(sec2θ- tan2θ)1+ tanθ-secθ = secθ+ tanθ-(secθ+ tanθ)(secθ- tanθ)1+ tanθ-secθ = (secθ+ tanθ)(1-secθ+tanθ) 1- secθ+tanθ = secθ + tanθ = 1cosθ + sinθcosθ = 1+sinθcosθ...
= RHS.Proved.
3. Prove that:
1-sinxcosx=cosx1+sinx
To prove: 1-sinxcosx=cosx1+sinxLHS = 1-sinxcosx =1-sinxcosx×1+sinx1+sinx =1-sin2xcosx(1+sinx) =cos2xcosx(1+sinx) =cosx1+sinx =RHS.
Proved.
4. Prove that:cosA1-sinA-cosA1+sinA=2tanA
To prove, cosA1-sinA-cosA1+sinA=2tanA.LHS=cosA1-sinA-cosA1+sinA =cosA(1+sinA)-cosA(1-sinA)1-sin2A =cosA+sinAcosA-cosA+sinAcosAcos2A =2sinAcosAcos2A =2sinAcosA =2tanA. =RHS.
Proved.
5. Prove that:cosA1+sinA+1+sinAcosA=2secA
To prove, cosA1+sinA+1+sinAcosA=2secA.LHS=cosA1+sinA+1+sinAcosA =cosA1+sinA×1-sinA1-sinA+1cosA+sinAcosA =cosA(1-sinA)1-sin2A+secA+tanA =cosA(1-sinA)cos2A+secA+tanA =1cosA-sinAcosA+secA+tanA =secA-tanA+secA+tanA =2secA =RHS.
Proved.
6. Prove that:sinA1+cosA+1+cosAsinA=2cosecA
To prove, sinA1+cosA+1+cosAsinA=2cosecA.LHS=sinA1+cosA+1+cosAsinA =sin2A+(1+cosA)2sinA(1+cosA) =sin2A+1+2cosA+cos2AsinA(1+cosA) =1+1+2cosAsinA(1+cosA) =2(1+cosA)sinA(1+cosA) =2sinA =2cosecA . =RHS.
Proved.
7. Prove that:(cosecA+1)(1-sinA)=cosA.cotA.
To prove, (cosecA+1)(1-sinA)=cosA.cotA.LHS=(cosecA+1)(1-sinA)
= (1 sinA + 1) (1 - sinA) = (1 + sinAsinA) (1 - sinA) = (1 - sin²AsinA)
= cos²AsinA
= cosA.cotA
= RHS.
Proved.
8. Prove that:cot2A-cos2A= cos2A.cot2A
To prove, cot2A-cos2A= cos2A.cot2ALHS=cot2A- cos2A =cos2A sin2A- cos2A =cos2A.cosec2A-cos2A =cos2A(cosec2A - 1
)
=cos2A.cot2A =RHS.
Proved.
9. Prove that:1secA-tanA=secA+tanA
To prove, 1secA-tanA=secA+tanA.LHS=1secA-tanA = 1secA-tanA×secA+tanAsecA+tanA =secA+tanAsec2A-tan2A =secA+tanA1 =secA+tanA =RHS.
Proved.
10. Prove that:1-cos4Bsin4B=1+2cot2A
To prove, 1-cos4cos4Bsin4sin4B=1+2cot2A.LHS= 1-cos4Bsin4B =1-cos2A2sin4A =(1-cos2A)(1+cos2A)sin4A =(1-cos2A)(1+cos2A)sin4A =sin2A(1+cos2A)sin2A.sin2A =1sin2A+cos2Asin2A =cosec2A+cot2A =cot2A+1+cot2A =1+2cot2A =RHS.
Proved.
11. Prove that:tanA+sinAtanA-sinA=secA+1secA-1
To prove, tanA+sinAtanA-sinA=secA+1secA-1
LHS= tanA+sinAtanA-sinA =sinAcosA+sinAsinAcosA-sinA =sinA(secA+1)sinA(secA-1) = secA+1secA-1 =RHS.
Proved.
12. Prove that :1-cot4Acosec4A=1-2cos2A
To prove, 1-cot4Acosec4A=1-2cos2A.
LHS=1-cot4Acosec4A =1cosec4A-cot4Acosec4A =sin4A-cos4A =sin2A2-cos2A2 =(sin2A+cos2A)(sin2A-cos2A) =1.(1-cos2A-cos2A) =1-2cos2A =RHS.
Proved.
13. Evaluate: cosec(-1485°)
Solution: Here,
cosec(-1485°)
=-cosec(1485°)
=-cosec(1440°+45°)
=-cosec(4×360°+45°)
=-cosec45°
= - cosec45°
= -√2
14. Evaluate:sin112°+cos80°-sin68°+cos100°
Solution:
We have, sin112°+cos80°-sin68°+cos100°=sin(180°-68°)+cos(180°-100°) -sin68°+cos100°=sin68°-cos100°-sin68°+cos100°=0.
15. Prove that: sin112°+cos80°-sin68°+cos100°=0
Solution:
To prove: sin112°+cos80°-sin68°+cos100°=0Here,LHS= sin112°+cos80°-sin68°+cos100°=sin(180°-68°)+cos(180°-100°)-sin68°+cos100°=sin68°-cos100°-sin68°+cos100°=0
16. Prove that:cos20°+cos40°+cos140°+cos160°=0
Proof:
Here,LHS= cos20°+cos40°+cos140°+cos160° =cos(180°-160°)+cos(180°-140°)+cos140°+cos160° =-cos160°-cos140°+cos140°+cos160° =0
= RHS.
Proved.
17. Simplify: sin³(-A)cos2(90°+A) .sin(180°+A)cos(270°+A
)Solution:
We have,sin3(-A)cos2(90°+A)
.sin(180°+A)cos(270°+A)=sin3(-A)(-sinA)2
.-sinAsinA=-sin3Asin2.-1=sinA
18. Evaluate:cosπc8+cos3πc8+cos5πc8+cos7πc8
Solution:
We have, cos
πc8+cos3πc8+cos5πc8+cos7πc8
=cosπc8+cos3πc8+cos(πc-3πc8) + cos(πc-πc8)=cosπc8+cos3πc8-cos3πc8- cosπc8=0.
19. Find the value of x : cosec(90°+A) +xcosA.cos(90°+A)=sin(90°+A
)
Solution; We have,
cosec(90°+A)+xcosA.cos(90°+A)=sin(90°+A
)⇒ secA+xcosA.(-sinA)=cosA⇒ secA-cosA=xsinAcosA⇒ xsinAcosA=1cosA-cosA⇒ xsinAcosA=1-cos2AcosA⇒ x=sin2AsinA.cos2A⇒ x=sinAcos2A
∴ x =tanA
cosA-
20. Prove that:
cos2πc8+cos23πc8+cos25πc8+cos2 7πc8=2
Here,
LHS=cos2πc8+cos23πc8+cos25πc8+cos2 7πc8 = 1- sin2πc8 +1-sin23πc8+cos2 (π2c+π8c)+cos2 ( π2c+3π8c) =2-sin2πc8--sin23πc8+-sinπ8c2 +(-sin3π8c)2 =2-sin2πc8-sin23πc8+sin2πc8+ sin23πc8 =2. =RHS.
Proved.
21. Prove that:
sin²πc16+sin23πc16+sin25πc16+sin27πc16=2.
To prove, sin2πc16+sin23πc16+sin25πc16+sin27πc16=2We have,
LHS= sin2πc16+sin23πc16+sin25πc16+sin27πc16 =sin2πc16+sin23πc16+sin2 (π2c+3π16c)+sin2 (π2c+π16c)
=sin2πc16+sin23πc16+cos2πc16+cos23πc16 =1+1 =2 . =RHS .
proved
22. Prove that:sinθ - cosθ + 1sinθ + cosθ - 1 = sec θ + tan θ
LHS =
Sinθ - cosθ + 1sinθ + cosθ - 1 = Sinθ – cosθ + 1cosθSinθ + cosθ - 1cosθ = tanθ + secθ - 1tanθ - secθ + 1 = (tanθ+secθ)-(sec 2θ-tan 2θ)tanθ- secθ + 1 = tanθ + secθ -(1 -sec θ + tan θ)1- secθ + tanθ = tanθ+secθ = RHS .Proved.
23. Prove that:
cotA + cosecA - 1cotA- cosecA + 1 = 1+ cos Asin A .
LHS =
cotA + cosecA - 1cotA- cosecA + 1 = cotA + cosec A-( cosec 2A - cot 2 A)cot A- cosec A + 1 = (∵1= cosec 2A-cot 2A) = cosec A + cotA -( cosec A+ cot A)( cosec A-cot A)1+ cot A- cosec A = (cosec A + cotA) ( 1 + cotA - cosec A)1+ cot A- cosec A = cosecA+cotA = 1sin A + cos Asin A = 1+ cos Asin A = RHSProved.
24. Prove that:
1+ cosec 2A cos 2 A sin 2 B1+ cosec 2A cos 2 c sin 2 B = 1+(cot AsinB) 21+(cot Csin B) 2
Proof RHS =
1 + (cotAsinB) 21+(cotCsinB) 2 = 1+( cos Asin A.sin B) 21+(cos csin c×sin B) 2 = 1+ cosec 2A cos 2 A sin 2 B1+ cosec 2A cos 2 c sin 2 B = LHS.Proved.
25. Prove that:
1cosec A - cotA - 1sin A
= 1sin A - 1cosec A + cotA ..
Proof LHS =
1cosec A - cotA - 1sin A .
= cosec 2 A - cot 2 Acosec A - cotA - cosec A = (cosecA +cotA)(cosecA-cotA)cosecA - cotA - cosecA = cosecA + cotA - cosecA = cot A RHS = 1sin A - 1cosecA + cotA ..
= cosec A - cosecs 2 A - cot 2 Acosec A + cotA = cosecA - (cosec A-cotA)
= cosec A - cosec A+cotA
= cot A = LHS .
Proved .
26. Prove that: tanxSec x - 1 - sinx1 + cosx .= 2 cotx
Proof LHS =
tanxSec x - 1 - sinx1 + cosx .
= tanx1cosx- 1 - sinx1 +cosx = sinxcosx1 - cosxcosx - sinx1 +cosx = sinx1 - cosx - sinx1 +cosx = sinx1 + cosx- sinx (1-cosx)(1 +cosx) (1 -cosx) = sinx+ sinxcos- sinx + sinx cosx1 -cos 2x = 2sinxcosxsin2x = 2cosxsin x = 2 cot x = RHS.Proved.
27. Prove that:
1 + 3cosθ - 4cos3θ1 -cosθ = (1 + 2cosθ )2
Proof Given
1 + 3cosθ - 4cos 3 θ1 -cos θ = (1 + 2 cos θ )2⇒
1 + 3 cos θ - 4 cos3 θ = (1 – cos θ ) (1 + 2 cos θ )2Now,RHS = (1 – cos θ ) (1 + 2 cos θ )2 = (1- cos θ ) (1 + 4 cos θ + 4 cos2 θ) = (1 + 4 cos θ + 4cos2 θ-cosθ - 4 cos2 θ+4 cos3 θ) = 1+ 3 cos θ - 4 cos3 θ = LHS.∴ LHS = RHS.Proved.
28. Prove that:sin2 α (4 cos2 α - 1)2 + cos2 α(4 sin2α - 1)2 = 1
Proof; LHS = sin
2 α (4 cos2α - 1)
2 + cos2 α (4 sin2α - 1)2 = sin2α (16 cos4 α - 8 cos2α+1) + cos2α (16 sin4 α - 8 sin2α+1) = 16 sin2α cos2α-8 sin2α cos2α + sin2α+16 cos2α sin4 α - 8 sin2 α cos2α + cos2α = 16 sin2α cos2α+16cos2α sin4 α-16 sin2α cos2 α + sin2α+ cos2 α = 16 sin2α cos2 α (cos2α + sin2-1 ) +1 = 16 sin2α cos2α (1-1 ) + 1 = 16 sin2α cos2α (1-1 ) + 1 = 16 sin2α cos2α ×0 + 1 = 0 + 1 = 1 = RHS. Proved.
29. Prove that: (1 + sin x - cos x)2 + (1 - sin x + cos x)2 = 4 (1 - sinx cos x)
Proof LHS = (1 + sin x - cos x)
2 + (1 - sin x + cos x) 2 = (1 + sin x) 2 - 2(1 + sin x) cos x + cos2x + (1 - sinx) 2 + 2(1 - sin x) cos x + cos2 x = 1 + 2sinx + sin2x - 2cos x - 2 cos x sin x + cos 2α + 1 - 2 sin x + sin2x + 2 cos x - sinx cos x + cos2x = 4 - 4 sin x cos x [Using sin2 x + cos2 x = 1. ] = 4 (1 - sin x cos x) = RHS.Proved.
30. Prove that:cot θ - sec θ cosec θ (2 cos 2 θ - 1) = 1
Proof LHS = cot θ - sec θ cosec θ (2 cos
2 θ-1) = cot θ - 1sinθcosθ (2 cos2 θ-1) = cosθsinθ - 2cos 2θ - 1sinθcosθ = cos 2θ -2cos 2θ + 1sinθcosθ = 1 -cos 2θsinθcosθ = sin 2 θsinθcosθ = tan θRHS = 1 + tan θ1 + cot θ = 1 + tan θ1 + 1tan θ = 1 + tan θtan θ + 1tan θ = tan θtan θ + 1tan θ = tan θ (1 + tan θ)(1 + tan θ) = tan θ = LHS.Proved.