Friday, October 5, 2018

Class 9 : Trigonometry 2

1. Find the value of sin(-110o)
Solution: 
Here,
     Sin(-110) = - sin110o
                     = -sin(90o+30o)
                     = - cos30o
                    = - √32 .


2. Find the value of cos(-690o).
Solution: 
Here,     Cos(-690o) = cos690o
                                = cos(2⨉360o-30o)
                                = cos30°                               = √3/2


3.  Find the value of  tan1020o.Solution: Here,
        tan1020° = tan(3⨉360° – 60°)
                       = tan60o
                       = √3.

4. Prove that: sin65° +cos35° = cos25° +sin55°
Proof: Here,
LHS = sin65° + cos35°         
        = sin(90°-25°) + cos(90°-55°)
        = cos25° + sin55°
         = RHS.
Proved.

5. Prove that: tan9o.cot27o – cot81o.tan63o = 0
Proof: Here,
LHS = tan9o.cot27o – cot81o.tan63o
        = tan(90o – 81o).cot(90o-63o) – cot81o.tan63o
        = cot81o.tan63o – cot81o.tan63o
        = 0
        = RHS.
Proved.

6. If A,B&C are the angles of triangle, prove that : Sin(A+B) = sinC.
 Proof: Here, A,B&C are the angles of a triangle
So,  A+B+C = 180°
   A+B = 180° - C
Operating both sides by sin,we get
   sin(A+B) = sin(180°-C)
 Sin(A+B) = SinC.
Proved.

7. Find the value of A if sin4A = cosA.
Proof: Here,
     sin4A = cosA
⇒ sin4A = cosA
 sin4A = sin(90o-A)
 4A = 90o - A
 4A+A = 90o
 5A=90o
 A=18o.
∴   A = 18o.

8. Find the value of x, if xcos(90°+A).cos(90°-A)+tan(180°-A)cot(90°-A) = sinA.sin(180°-A).
Proof: Here,
       xcos(90+A).cos(90-A)+tan(180-A)cot(90+A) = sinA.sin(180-A).
  -xsinA.sinA +tanA.tanA = sinA.sinA
  -xsin2A + tan2A = sin2A
 sin2A + xsin2A = tan2A
 sin2A( 1+x) = tan2A
 1+ x = sec2A
 x = sec2A-1`
 x = tan2A.
∴  x = tan2A.

9. If A,B& C are angles of a triangle, prove that:  tan(A+B)+tanC = 0.
Solution: Here,
 A,B& C are angles of a triangle.
So, 
    A+B+C =180o
i.e.  A+B = 180° - C.
Operating both sides by tan,we get
      tan(A+B) = tan(180-C)
 tan(A+B) = - tanC
 tan(A+B) + tanC = 0
      LHS = RHS 
Proved.

10. If  A =30o & B=60o, verify : sin(A+B) = sinAcosB + cosAsinB.Solution: Here, A =30o & B=60o
     Now, sin(A+B) = sinAcosB + cosAsinB.
 sin(30o+60o= sin30o.cos60o+cos30o.sin60o
  sin90  = 12 .12 + √32.√32    ⇒ 1 14 + 34
 ⇒ 1 = 1
Verified.

11. Solve for x ,
xcotA.tan(90°+A) = tan(90°+A).cot(180°-A) +xsec(90°+A).cosecA.
Sokution: Here,
  xcotA.tan(90+A) = tan(90+A).cot(180-A)  
+xsec(90+A).cosecA
  xcotA.(-cotA) = -cotA.(-cotA)+x(-cosecA).cosecA
 -xcot2A = cot2A - xcosec2A
 xcosec2A - xcot2A = cot2A
  x(cosec2A-cot2A) = cot2A.
  x ⨉ 1 = cot2A
  x = cot2A.
∴   x = cot2A.

12. Prove that: sin(90°+A).cos(180°-A).tan(180°-A) = sin2(90°+A).cot(90°-A).
Proof: Here,
  LHS = sin(90°+A).cos(180°-A).tan(180°-A)
           = cosA.(-cosA).(-tanA)
           = cos2A.tanA
RHS =  sin2(90°+A).cot(90°-A).
       = cos2A.tanA
       = LHS.
Proved.

13. Without using trigonometric tables, evaluate sin 35° sin 55° - cos 35° cos 55°.
Solution: Here,
      sin 35° sin 55° - cos 35° cos 55°
   = sin 35° sin (90° - 35°) - cos 35° cos (90° - 35°),
   = sin 35° cos 35° - cos 35° sin 35°,     
[Since sin (90° - θ) = cos θ and cos (90° - θ) = sin θ]
   = sin 35° cos 35° - sin 35° cos 35°
   = 0.

14. If sec 5θ = cosec (θ - 36°), where 5θ is an acute angle, find the value of θ.
Solution: Here,
     sec 5θ = cosecc (θ - 36°)
⇒ cosec (90° - 5θ) = cosec(θ - 36°), [Since sec θ = csc (90° - θ)]
⇒ (90° - 5θ) = (θ - 36°)
⇒ -5θ - θ = -36° - 90°
⇒ -6θ = -126°
⇒ θ = 21°, [Dividing both sides by -6]
Therefore, θ = 21°.

15. Using trigonometrical ratios of complementary angles prove that tan 1° tan 2° tan 3° ......... tan 89° = 1.
Proof: Here,
LHS= tan 1° tan 2° tan 3° ...... tan 89°
       = tan 1° tan 2° ...... tan 44° tan 45° tan 46° ...... tan 88° tan 89°
       = (tan 1° ∙ tan 89°) (tan 2° ∙ tan 88°) ...... (tan 44° ∙ tan 46°) ∙ tan 45°
       = {tan 1° ∙ tan (90° - 1°)} ∙ {tan 2° ∙ (tan 90° - 2°)} ...... {tan 44° ∙ tan (90° - 44°)} ∙ tan 45°
       = (tan 1° ∙ cot 1°)(tan 2° ∙ cot 2°) ...... (tan 44° ∙ cot 44°) ∙ tan 45°,
                               [Since tan (90° - θ) = cot θ]= (1)(1) ...... (1) ∙ 1, [Since tan θ ∙ cot θ = 1 and tan 45° = 1]
       = 1
 Therefore, tan 1° tan 2° tan 3° ...... tan 89° = 1.`

16. Find the value of tan 240°.
Solution: Here,
tan (240)° = tan (180 + 60)°
              = tan 60°;     [since we know tan (180° + θ) = tan θ.]
              = √3.

17. Find the value of sec 210°.
Solution: Here,
       sec (210)° = sec (180 + 30)°
                        = - sec 30°;
[since we know sec (180° + θ) = - sec θ]

                        = -2√3.

18. Find the value of tan 240°.
Solution: Here, tan (240)° = tan (180 + 60)°
              = tan 60°; since we know tan (180° + θ)
                           = tan θ
                           = √3.

19. Find the value of sec 150°.
Solution: Here,
      sec 150° = sec (180 - 30)°
                     = - sec 30°; 
[since we know, sec (180° - θ)   = - sec θ]
                     = - 2√3.

20. Find the value of tan 120°.
Solution: Here,
     tan 120° = tan (180 - 60)°
      = - tan 60°; since we know, tan (180° - θ) = - tan θ
                    = - √3.
21. Find the value of cos 200° sin 160° + sin (- 340°) cos (- 380°).
Solution: Here,
Given,
       cos 200° sin 160° + sin (- 340°) cos (- 380°)
    = cos (2 × 90° + 20°) sin (1 × 90° + 70°) + (- sin 340°) cos 380°
    = - cos 20° cos 70° - sin (3 × 90° + 70°) cos (4 × 90° + 20°)
    = - cos 20° cos 700 - (- cos 70°) cos 20°
    = - cos 200 cos 70° + cos 70° cos 20°
    = 0.

22. Express cos (- 1555°) in terms of the ratio of a positive angle less than 30°.
Solution: Here,
cos(- 1555°) = cos 1555°, 
 [since we know cos (- θ) = cos θ]

                     = cos (17 × 90° + 25°)
                     = - sin 25°;
[since the angle 1555° lies in the second d quadrant and cos ratio is negative in this quadrant. Again, in the angle 1555° = 17 × 90° + 25°, multiplier of 90° is 17, which is an odd integer ; for this reason cos ratio has changed to sin.].

23. A, B, C, D are the four angles, taken in order of a cyclic quadrilateral. Prove that, cot A + cot B + cot C + cot D = 0.
Proof: Here.
We know that the opposite angles of a cyclic quadrilateral are supplementary.
Therefore, by question we have,
      A + C= 180°               or, C = 180° - A;
And B + D= 180°               or, D = 180° - B.

Therefore,
  L. H. S. = cot A + cot B + cot C + cot D
               = cot A + cot B + cot (180° - A) + cot (180° - B)
               = cot A + cot B - cot A - cot B
               = 0.
               = RHS.
Proved.

24. Prove that:
sinA1+cosA + sinA1-cosA  = 2cosecA
Proof: 

LHS = sinA1+cosA + sinA1-cosA 
         = sinA1-cosA+ sinA1+cosA1+cosA1-cosA
         = sinA-sinA.cosA+sinA+sinA.cosA1-cos2A
         = 2sinAsin2A                                [∴ 1 - cos2 A = sin2 A ]
        = 2sinA
        = 2 cosecA                           [∴ cosecA = 1sinA]
        = RHS.
Proved.

25. 
Find the value of:
cosec (-1170°)
Solution: Here,
cosec (-1170°) 
= - cosec (1170°)
= - cosec (3 × 360° + 90°)
= - cosec 90° 
= -1 
 26. If secθ + tanθ= x, show that sinθ = x2  1x2+ 1.Solution: Given:
     secθ + tanθ= x
 1cosθ + sinθcosθ = x
⇒    1+sinθcosθ = x
Squaring on both sides,
      (1+sinθcosθ)2 = x2
⇒    (1+sinθ)2cos2θ = x2⇒      (1+sinθ)21 - sin²θ = x2
⇒    1+sinθ2(1-sinθ)(1+sinθ) = x2
⇒   1+sinθ1-sinθ = x2
⇒   1 + sinθ = x2 - x2sinθ
⇒   sinθ + x2sinθ = x2 - 1 
⇒   sinθ(1 + x2) = x2 - 1 
⇒  sinθ = x2  1x2+ 1
∴  sinθ = x2  1x2+ 1
Proved.

27. If A = 2B = 3C = 90°, find the value of cos2A – cot2B + cosec2C.
Solution: Here,
A = 90° 
2B = 90° Þ B = (90° )/2 = 45°
3C = 90° Þ C = (90° )/3 = 30°
Now, 
cos2A - cot2B + cosec2C
= cos290° - cot245° + cosec230°
= 02 + (1)2 + (2)2 
= -1 + 4 
= 3
 28. If cosA=45, find the values of cosecA and tanA.Solution: We have,
           cosA=45
Now
, cosecA=1sinA
                      =
1√{1-cos2A}
                      =
11-452
                      =
5√{52-42
                      =
53

Again,
TanA
=sinAcosA
         =
1cosecA.cosA
        =
153.45
        =
34.

29. If  tanA2aba2-b2, find the values of cosA and sinA.Solution: find your self. If you can't do, ask me
30. If pcotA=√p2-q2, then find the value of sinA.Solution: find your self. If you can't do, ask me

31. If 3cosA=2 then show that 6sin2A=5cosA.Solution:
We have, 3 cosA=2
i.e.  cosA=23
To prove,6sin2A=5cosA
Here, LHS=6sin2A
                   =6(1- cos²A)
                   =6(1- )
                   =6(1-49 )
                   =103
Again,
       
 RHS=5cosA
                
=5×23
                 =
103

Hence,
      
 LHS=RHS

Proved.

32. 
if A is angle and 5sinA=3, find the value of 4cosecA-3cotA.
Solution: We have,
      5sinA=3
i.e.  sinA=35
Now, 
4cosecA-3cotA
      =4sinA-3cosAsinA
     =4sinA-3√(1 -sin2A)sinA
     =4-3√(1-sin2A)sinA
     =4-3√1-35235
     =
83.
  
33. If X is an acute angle and
cosecX
=135, find the value of 13cosX+24
tanX.
Solution: 
We have,
cosecX=135
Now, sinX=1cosecX=513
cosX=√1-sin2X= √1-5132=1213
tanX=sinXcosX=5131213=512
Hence, 13cosX+24tanX
         =13×1213+24×512
         =12+10
         =22.
34. If A is an acute angle and tanA34, find the value of 5cosecA+10secA.Solution: 
We have,tanA=34
Now, secA= √1+tan2A=√1+342=54
          cotA=1tanA=43
           cosecA= √1+cot2A=√1+432=53
Now,
        
 5cosecA+10secA
     
=5×53+10×54
      =
1256. 
 
35. Find the value of :sin2135°+cos2120°- sin2120°+tan2150°
Solution: We have, 
sin2135°+cos2120°-sin2120°+tan2150° 
=sin2(180°-45°)+cos2(180°-60°)-sin2(180°-60°)+ tan²(180°-30°)
=sin245+cos260-sin260+tan230
=1√22+122-√322+1√32
=12+14-34+13
=13. 
36. If 15 sin2θ + 2 cos2 θ = 7, find the value of tan θ.Solution: Given,
      15 sin2θ  +  2 cos2θ  = 7
⇒   15 sin2θ + 2 (1 - sin2θ) = 7
⇒  15 sin2θ  + 2 - 2sin2θ) = 7
⇒ 13 sin2θ = 5
⇒ sin2θ = 513
⇒  sinθ = ±√5√13 = ph
∴when p = √5, then h = √13
     b = √h2-P2
        
= √13-5
        
= √8
        
= 2√2
.
Finally,
    tanθ = Pb = √52√2. 
37. If 2 + 2 tan θ = sec2 θ, find the value of tan θ.Solution: Given,
      2 + 2 tan θ = sec 2 θ
⇒  2 + 2 tan θ =1 + tan 2 θ
⇒ tan2 θ  - 2tan θ  - 1  = 0 ......(i)
Comparing this with ax2 + bx + c = 0 
We get a =1, b = - 2 , c = -1 & x = tan θ
 x = tanθ= -± b2-4ac2a
       = 2 ± √-22-4×1-12×1
      = 2 ± 2√22
     = 1±√2.
 tanθ= 1 ± √2.  
38. If sin A = m and tan A = n,
Prove that: m-2 - n-2
= 1
Solution: 
Given , sin A = m
⇒  1m = 1sin A
⇒  cosec A = 1sin A
⇒  cosec A = 1m
⇒  cosec2 A = 1m 2
 ...........(i)
and tan A = n
⇒  1tan A = 1n
⇒ cotA= 1n
⇒  cot2 A = 1n2 .............(ii)
Subtracting (ii) form (i),
cosec²- cot²= 1m 2  1n 2
⇒ 1 = m-2 - n-2            (∵ cosecA - cot2 A = 1 )
∴ m-2 - n-2 = 1.
Proved.

39. If secθ+ tanθ= x, show that:sinθ= x 2- 1x 2+ 1. 

Solution: Given,
        sec θ + tan θ = x
⇒  1cosθ + sin θcosθ = x
⇒  1+ sin θcosθ = x
⇒  1+ sin θ = x cos θ
Squaring both sides,
      (1 + sinθ)2 = x2 cos2 θ
⇒  1 + 2sin θ + sin2 θ = x2 (1 -  sin2 θ)
⇒  1+ 2sin θ + sin2 θ = x2 - x2 sin2 θ
⇒  (1 + x2) sin2 θ + 2 sin θ + (1 - x2 ) = 0
⇒  (1 + x2) sin2 θ + {(1 + x2 ) + (-x2 )sin θ} + (1 - x2 ) = 0
⇒ (1 + x2) sin2 θ + (1 + x2 ) sin θ + (1 - x2 )sin θ + (1 - x2 ) = 0
⇒  (1 + x2) sin θ  (sin θ+1) + (1 - x2 ) (sin θ + 1) = 0
⇒ [(1 + x2) sin θ + (1 - x2 )] (sin θ + 1) = 0.
Either ,(1 + x2) sin θ + (1 - x2) = 0  
⇒ (1 +  x2) sin θ = x2 - 1
⇒  sinθ= x 2- 1x 2+ 1
sinθ= x 2- 1x 2+ 1.  
40. If cos4A + cos2A = 1, then prove that: sec4A - sec2A = 1
Proof: 
Given,
      cos4 A + cos2 A = 1
⇒  1sec 4 A + 1sec 2 A = 1 cosA= 1sec A
⇒  1+sec 2 Asec 4 A = 1 
⇒  1+ sec 2 A = sec 4 A
⇒  1 = sec 4 A  sec 2 A 
∴    sec 4 A - sec 2 A = 1.
Proved.
41. If cos4A + cos2A = 1, then prove that: tan4A + tan2A = 1
Proof: Given,
     cos 4  A + cos 2  A = 1 
⇒   cos 4  A = 1 - cos 2  A
⇒  cos 4  A = sin 2  A.
Now, 
LHS = tan 4  A + tan 2  A
        = sin 4 Acos 4 A + sin 2 Acos 2 A
       = cos 4 A2cos 4 A + cos 4 A2cos 2 A         (∵ cos 4 A = sinA)
        = cosA + cos 2 A (Given cos A + cos 2 A = 1)
        = 1.
∴ tan 4A + tan 2A = 1.
Proved.
42. If 3 sin B + 5 cos B = 5, show that: 3 cos B - 5 sin B = ± 3.

43. 
If tan A + sin A = p and tan A - sin A = q, prove that:
P2 - q2 = 4 √pq
Solution: Given,
                (tan A + sin A) = p ............... (i)
                (tan A - sin A) = q................ (ii)
Multiplying   (i) & (ii) 
      tan2 A - sin2 A = pq
⇒   pq = sin 2 Acos 2 A  sin 2 A
              = sin 2 A-sin 2 A cos 2 Acos 2 A
              = sin 2 Acos 2 A  1- cos 2 A
              = tan 2 A. sin 2 A
 √pq  =tantanA.sinsinA..iii

Again squaring & subtracting (i) & (ii)
(tan A + sin A ) 2 = p2............... (i)
(tan A -  sin A) 2 = q2................ (ii)
     tan2 A+ 2 tan A sin A + sin2 A - tan2 A + 2 tan A sin A - sin2 A = p2 - q2
⇒   4 tan A sin A = p2 - q2
⇒   4√pq = p2 - q2 [ ∵ from (iii) ]
∴   p2 - q2 = 4√pq.

Proved.

44. 
If x sin3 θ - sinθcosθ +y cos3 θ = 0 and tanθ= yx . Show that x2 + y2 = 1.
Solution: Given,
      tanθ= yx
⇒   sin θcosθ = yx
⇒  sinθ= yxcosθ
Now,
Put sin θ = (y )/x cosθ in
      x sin3 θ - sin2 θ cos θ + y cos3 θ = 0
⇒   yx cos θ3 - yx2 cos2 θ+ y. cos3 θ = 0 
⇒   y 3x 2 cos3 θ - y 2x 2 cos3 θ + y cos3 θ = 0
⇒  3 cos3 θ - y 2 cos3 θ + x 2 y cos3 θ = 0
⇒  y cos3 θ(y 2- 1+ x 2) = 0
⇒  y 2- 1+ x 2 = 0
⇒  2+ y 2 = 1.

∴  LHS = RHS
Proved.

45. 
If 1sinsinA + 1sinsinB+1sinsinC = 0, then prove that: sinsinA+sinsinB+sinsinC2 = 3 - cos2 A + cos2 B + cos2 C
Proof: Given,
1sinA + 1sinB + 1ssinC = 0
⇒  1sinA + 1sinB = -1sinC
⇒ sinA+sinB= -sin A sin BsinC
⇒ sinAsinC+sinBsinC = - SinBsin A 

LHS
 = (sin A + sin B + sin C)2
 = sin2 A + sin2 B + Sin2 c + 2 (sin A sin B + sin B sin C + sin A sin C)
 = 1 - cos2 A + 1 - cos2 B + 1 - cos2 C + 2 (sin A sin B - sin A sin B)
 = 3 - (cos2 A + cos2 B + cos2 C) + 2 × 0
 = 3 - (cos2 A + cos2 B + cos2 C)
 = RHS.
Proved. 

46. 
Find the value of x in the given equation:
xcos(90° + α)cos(90° - α)+tan180° - αcot(90° + α)=sinαsin(180° -α )

Proof: Given, equation
xcos(90° + α)cos(90° - α)+tan(180° - α)cot(90° + α)=sinαsin(180° - α)
⇒   (-sinα).sinα+ tanα(-tanα)=sinα. sin α
⇒   -x sin2 α + tan2 α = sin2 α
⇒   tan2 α - sin2 α = x sin2 α
⇒   tan 2 α  sin 2 αsin 2 α = x
⇒   tan 2 αsin 2 α - sin 2 αsin 2 α = x
⇒   sec 2 α - 1 = x
⇒   tan 2 α = x
 x = tan 2 α is the required solution.

47. 
Find the value of x in the given equation:
sin(270° - θ)sin(450° - θ)-cos(630° - θ)cos(90° + θ)+ xcos 900 ° = 0
Solution: Do yourself. If any problem, ask me.

48. Find the value of x in the given equation:
xsec(90° + α)cosec α +tan(90° + α)⁡cot(180° - α)= xcotαtan(90° + α)

Solution: Given equation is
xsec(90° + α)cosec α +tan(90°+ α)cot(180° - α)= xcotαtan(90° +α)
⇒  x (-cosec α)cosec α + (-cotα). (-cotα)=xcotα(-cotα)
⇒   - x cosec2 α + cot2 α = -xcot2α
⇒   - x cosec2 α + x cot2 α = -cot2 α
⇒   - x (cosec2 α - cot2 α) = -cot2 α
⇒   x × 1 = cot2 α
∴ x = cot2 α is the required solution.

49. 
Prove that :tan205° -tan115°tan245°+tan335° = 1 + p 21  p2, iftan25° = P.Proof: Given tan 25° = p Þ  cotcot25° = 1p
Now,
LHS = tan205° - tan115°tan245° +  tan335°
tan 180° + 25°-tan 90°+25° tan 270°-25°+tan 360°-25° 
tan25° + cot 25° cot25°- tan25° 
+ 1p1p  p
P 2 + 1p1p  p1 p 2p
1 + p 21  p 2 = RHS proved.
50. 
If θ = 45°, then prove that:sin3θ- 3sinθ  4 sin 3θ2 = 12sin3θSolution: Given,
θ = 45°
LHS =sin(3× 45°) - 3sin45° -4 sin 345°2
=sin135° - 3× 1√2 - 4 × ( 1√2) 32
=sin(180° - 45°)-  √3/2  2√22
= sin45° - 3  22√2
= 12  12√2
2  12√2
12√2
RHS = 12sin3θ
12sin135°
12sin(180° - 45°)
12sin45°
= 12 ×1√2
12√2
= LHS
 Proved.

51. If A = 2B = 3C =9D = 90°, find the value of cos2 A - cot2 B + cosec2C + 4 sin2 3D.
Solution: Given. 
A = 2B = 3C = 99 = 90°
2B = 90°          Þ         B =  45°
3C = 90°          Þ         C = 30°
and  9D = 90°  Þ         D = 10 ° 
Now ,
cos2A - cot2B + cos2C + 4 sin2 3D
= cos290° - cos245° + cosec245° + 4 sin2 30°
= 12 - 12+ √22 + 4 × 122
= 1  1 + 2 + 4 × 14
= 2 + 1
= 3

52. 
ABCD is a quadrilateral with opposite angles is supplementary then proves that:
(a) cos A + cos B + cos C + cos D = 0
(b) tan A + tan B+ tan C + tan D = 0Solution: According to the question,
A + C = 180°  or, A = 180° - C
and B + D = 180  or, B = 180°  - D
    (a) LHS =  Cos A + Cos B + Cos C + Cos D 
       = cos (180° - C) + cos (180° - D) + cos C + cos D 
             = - cos C - cos D + cos C + cos D
             = 0 
= RHS

(b) tan A + tan B + tan C + tan D
= tan (180° - C) + tan (180° - D) + tan C + tan D
=  - tan C - tan D + tan C + tan D
= 0 = RHS
proved.
 53. Prove:
cotx c20
cot3x c20cot5x c20cot 7x c20 cot 9x c20 = 1Proof: LHS =cotπ20. cot3π20cot5π20cot7π20.cot9π20
=cotπ20.cot3π20cotπ4  cotπ2 - 3π2.cotπ2 - π20
=cotπ20.cot3π20×1 ×tan3π20 tanπ20
= 1tan π20 ×1tan 3π20 × tan3π20× tanπ20
= 1 RHS
 Proved.

54. 
Prove :
cotx c10  cot3x c10cotx c4cot4x c10  cot 2x c10= 1Solution: 
LHS = cotπ10.cot3π10cotπ4cot4π10cot2π10
=cotπ10cotπ2-2π10 × 1.cotπ2π10.cot2π10
=cotπ10.tan2π10 .tanπ10 ×cot2π10
= 1tan π10 × tan2π10× tanπ10 × 1tan 2π10
= 1 
= RHS 
Proved.