1. Find the value of sin(-110o)
Solution: Here,
√3 2 .
2. Find the value of cos(-690o).
Solution: Here, Cos(-690o) = cos690o
= cos(2⨉360o-30o)
= cos30° = √3/2
3. Find the value of tan1020o.Solution: Here,
4. Prove that: sin65° +cos35° = cos25° +sin55°
Proof: Here,
7. Find the value of A if sin4A = cosA.
Proof: Here,
sin4A = cosA
⇒ sin4A = cosA
⇒ sin4A = sin(90o-A)
⇒ 4A = 90o - A
⇒ 4A+A = 90o
⇒ 5A=90o
⇒ A=18o.
∴ A = 18o.
8. Find the value of x, if xcos(90°+A).cos(90°-A)+tan(180°-A)cot(90°-A) = sinA.sin(180°-A).
Proof: Here,
xcos(90+A).cos(90-A)+tan(180-A)cot(90+A) = sinA.sin(180-A).
⇒ -xsinA.sinA +tanA.tanA = sinA.sinA
⇒ -xsin2A + tan2A = sin2A
⇒ sin2A + xsin2A = tan2A
⇒ sin2A( 1+x) = tan2A
⇒ 1+ x = sec2A
⇒ x = sec2A-1`
⇒ x = tan2A.
∴ x = tan2A.
9. If A,B& C are angles of a triangle, prove that: tan(A+B)+tanC = 0.
Solution: Here,
A,B& C are angles of a triangle.
So,
A+B+C =180o
i.e. A+B = 180° - C.
Operating both sides by tan,we get
tan(A+B) = tan(180-C)
⇒ tan(A+B) = - tanC
⇒ tan(A+B) + tanC = 0
LHS = RHS
10. If A =30o & B=60o, verify : sin(A+B) = sinAcosB + cosAsinB.Solution: Here, A =30o & B=60o.
Now, sin(A+B) = sinAcosB + cosAsinB.
⇒ sin(30o+60o) = sin30o.cos60o+cos30o.sin60o
⇒ sin90o =1 2 .1 2 + √3 2 .√3 2 ⇒ 1 = 1 4 + 3 4
⇒ 1 = 1
11. Solve for x ,
= cosA.(-cosA).(-tanA)
= cos2A.tanA
RHS = sin2(90°+A).cot(90°-A).
= cos2A.tanA
= LHS.
13. Without using trigonometric tables, evaluate sin 35° sin 55° - cos 35° cos 55°.
Solution: Here,
sin 35° sin 55° - cos 35° cos 55°
= sin 35° sin (90° - 35°) - cos 35° cos (90° - 35°),
= 0.
14. If sec 5θ = cosec (θ - 36°), where 5θ is an acute angle, find the value of θ.
Solution: Here,
sec 5θ = cosecc (θ - 36°)
⇒ cosec (90° - 5θ) = cosec(θ - 36°), [Since sec θ = csc (90° - θ)]
⇒ (90° - 5θ) = (θ - 36°)
⇒ -5θ - θ = -36° - 90°
⇒ -6θ = -126°
⇒ θ = 21°, [Dividing both sides by -6]
Therefore, θ = 21°.
15. Using trigonometrical ratios of complementary angles prove that tan 1° tan 2° tan 3° ......... tan 89° = 1.
Proof: Here,
LHS= tan 1° tan 2° tan 3° ...... tan 89°
= tan 1° tan 2° ...... tan 44° tan 45° tan 46° ...... tan 88° tan 89°
= (tan 1° ∙ tan 89°) (tan 2° ∙ tan 88°) ...... (tan 44° ∙ tan 46°) ∙ tan 45°
= {tan 1° ∙ tan (90° - 1°)} ∙ {tan 2° ∙ (tan 90° - 2°)} ...... {tan 44° ∙ tan (90° - 44°)} ∙ tan 45°
= (tan 1° ∙ cot 1°)(tan 2° ∙ cot 2°) ...... (tan 44° ∙ cot 44°) ∙ tan 45°,
[Since tan (90° - θ) = cot θ]= (1)(1) ...... (1) ∙ 1, [Since tan θ ∙ cot θ = 1 and tan 45° = 1]
= 1
Therefore, tan 1° tan 2° tan 3° ...... tan 89° = 1.`
16. Find the value of tan 240°.
Solution: Here,
tan (240)° = tan (180 + 60)°
= tan 60°; [since we know tan (180° + θ) = tan θ.]
= √3.
17. Find the value of sec 210°.
Solution: Here,
sec (210)° = sec (180 + 30)°
= - sec 30°;
[since we know sec (180° + θ) = - sec θ]
= -2 √3 .
18. Find the value of tan 240°.
Solution: Here, tan (240)° = tan (180 + 60)°
= tan 60°; since we know tan (180° + θ)
= tan θ
= √3.
19. Find the value of sec 150°.
Solution: Here,
sec 150° = sec (180 - 30)°
2 √3 .
20. Find the value of tan 120°.
Solution: Here,
tan 120° = tan (180 - 60)°
= - tan 60°; since we know, tan (180° - θ) = - tan θ
= - √3.
21. Find the value of cos 200° sin 160° + sin (- 340°) cos (- 380°).
Solution: Here,
Given,
cos 200° sin 160° + sin (- 340°) cos (- 380°)
= cos (2 × 90° + 20°) sin (1 × 90° + 70°) + (- sin 340°) cos 380°
= - cos 20° cos 70° - sin (3 × 90° + 70°) cos (4 × 90° + 20°)
= - cos 20° cos 700 - (- cos 70°) cos 20°
= - cos 200 cos 70° + cos 70° cos 20°
= 0.
22. Express cos (- 1555°) in terms of the ratio of a positive angle less than 30°.
Solution: Here,
cos(- 1555°) = cos 1555°,
[since we know cos (- θ) = cos θ]
= cos (17 × 90° + 25°)
= - sin 25°;
[since the angle 1555° lies in the second d quadrant and cos ratio is negative in this quadrant. Again, in the angle 1555° = 17 × 90° + 25°, multiplier of 90° is 17, which is an odd integer ; for this reason cos ratio has changed to sin.].
23. A, B, C, D are the four angles, taken in order of a cyclic quadrilateral. Prove that, cot A + cot B + cot C + cot D = 0.
Proof: Here.
We know that the opposite angles of a cyclic quadrilateral are supplementary.
Therefore, by question we have,
A + C= 180° or, C = 180° - A;
And B + D= 180° or, D = 180° - B.
Therefore,
L. H. S. = cot A + cot B + cot C + cot D
= cot A + cot B + cot (180° - A) + cot (180° - B)
= cot A + cot B - cot A - cot B
= 0.
= RHS.
sinA 1 + cosA + sinA 1 - cosA = 2cosecA
Proof:
LHS =sinA 1 + cosA + sinA 1 - cosA
=sinA 1 - cosA + sinA 1 + cosA 1 + cosA 1 - cosA
=sinA - sinA.cosA + sinA + sinA.cosA 1 - cos 2 A
=2 sinA sin 2 A [∴ 1 - cos2 A = sin2 A ]
=2 sinA
= 2 cosecA [∴ cosecA =1 sinA ]
= RHS.
cosec (-1170°)
= - cosec (1170°)
= - cosec (3 × 360° + 90°)
= - cosec 90°
= -1
26. If secθ + tanθ= x, show that sinθ =x 2 – 1 x 2 + 1 .Solution: Given:
secθ + tanθ= x
⇒1 cosθ + sinθ cosθ = x
⇒1 + sinθ cosθ = x
Squaring on both sides,
(1 + sinθ cosθ )2 = x2
⇒(1 + sinθ) 2 cos 2 θ = x2⇒ (1 + sinθ) 2 1 - sin²θ = x2
⇒1 + sinθ 2 (1 - sinθ) (1 + sinθ) = x2
⇒1 + sinθ 1 - sinθ = x2
⇒ 1 + sinθ = x2 - x2sinθ
⇒ sinθ + x2sinθ = x2 - 1
⇒ sinθ(1 + x2) = x2 - 1
⇒ sinθ =x 2 – 1 x 2 + 1
∴ sinθ =x 2 – 1 x 2 + 1
27. If A = 2B = 3C = 90°, find the value of cos2A – cot2B + cosec2C.
Solution: Here,
A = 90°
2B = 90° Þ B = (90° )/2 = 45°
3C = 90° Þ C = (90° )/3 = 30°
Now,
cos2A - cot2B + cosec2C
= cos290° - cot245° + cosec230°
= 02 + (1)2 + (2)2
= -1 + 4
= 3
28. IfcosA = 4 5 , find the values of cosecA and tanA. Solution: We have,
cosA = 4 5
Now, cosecA = 1 sinA
=1 √{1-cos 2 A}
=1 1 - 4 5 2
=5 √{5 2 - 4 2
=5 3
Again,
TanA = sinA cosA
=1 cosecA.cosA
=1 5 3 . 4 5
=3 4.
29.If tanA = 2 ab a 2 - b 2 , find the values of cosA and sinA. Solution: find your self. If you can't do, ask me
30.If pcotA =√ p 2 - q 2 , the n find the value of sinA. Solution: find your self. If you can't do, ask me
31.If 3 cosA = 2 then show that 6 sin 2 A = 5 cosA. Solution:
We have , 3 cosA = 2
i.e. cosA = 2 3
To prove , 6 sin 2 A = 5 cosA
Here , LHS = 6 sin 2 A
= 6 ( 1 - cos²A )
= 6 (1 - 2² 3² )
= 6( 1 - 4 9 )
= 10 3
Again ,
RHS = 5 cosA
= 5 × 2 3
=10 3
Hence ,
LHS = RHS
We have ,
5 sinA = 3
i.e. sinA = 3 5
Now ,
4 cosecA - 3 cotA
= 4 sinA - 3 cosA sinA
= 4 sinA - 3√ ( 1 - sin 2 A ) sinA
= 4 - 3√ ( 1 - sin 2 A ) sinA
= 4 - 3√ 1 - 3 5 2 3 5
=8 3.
33.If X is an acute angle and
cosecX = 13 5 , find the value of 13 cosX + 24 tanX.
Solution:
We have ,
cosecX = 13 5
Now , sinX = 1 cosecX = 5 13
cosX = √1 - sin 2 X = √ 1 - 5 13 2 = 12 13
tanX = sinX cosX = 5 13 12 13 = 5 12
Hence , 13 cosX + 24 tanX
= 13 × 12 13 + 24 × 5 12
= 12 + 10
= 22.
34.If A is an acute angle and tanA = 3 4 , find the value of 5 cosecA + 10 secA. Solution:
We have , tan A = 3 4
Now , secA = √1 + tan 2 A = √1 + 3 4 2 = 5 4
cotA = 1 tanA = 4 3
cosecA = √1 + cot 2 A = √1 + 4 3 2 = 5 3
Now ,
5 cosecA + 10 secA
= 5 × 5 3 + 10 × 5 4
=125 6.
35.Find the value of : sin 2 135 ° + cos 2 120 °- sin 2 120 ° + tan 2 150 °
Solution: We have ,
sin 2 135 ° + cos 2 120 ° - sin 2 120 ° + tan 2 150 °
= sin 2 (180° - 45°) + cos 2 (180° - 60°) - sin 2 (180° - 60°) + tan²(180° - 30° )
= sin 2 45 + cos 2 60 - sin 2 60 + tan 2 30
= 1 √2 2 + 1 2 2 - √3 2 2 + 1 √3 2
= 1 2 + 1 4 - 3 4 + 1 3
= 1 3.
36. If 15 sin2θ + 2 cos2 θ = 7, find the value of tan θ.Solution: Given,
15 sin2θ + 2 cos2θ = 7
⇒ 15 sin2θ + 2 (1 - sin2θ) = 7
⇒ 15 sin2θ + 2 - 2sin2θ) = 7
⇒ 13 sin2θ = 5
⇒ sin 2 θ = 5 13
⇒ sin θ = ± √5 √13 = p h
∴when p = √ 5 , then h = √13
b = √ h 2 - P 2
= √13 - 5
= √8
= 2√ 2 .
Finally,
tan θ = P b = √5 2 √2.
37. If 2 + 2 tan θ = sec2 θ, find the value of tan θ.Solution: Given,
2 + 2 tan θ = sec 2 θ
⇒ 2 + 2 tan θ =1 + tan 2 θ
⇒ tan2 θ - 2tan θ - 1 = 0 ......(i)
Comparing this with ax2 + bx + c = 0
We get a =1, b = - 2 , c = -1 & x = tan θ
∴ x = tan θ = - b ± b 2 - 4 ac 2 a
=2 ± √ - 2 2 - 4 × 1 - 1 2 × 1
=2 ± 2 √2 2
=1 ± √2 .
∴ tan θ = 1 ± √ 2.
38. If sin A = m and tan A = n,
Prove that: m-2 - n-2= 1
Solution: Given , sin A = m
⇒ 1 m = 1 sin A
⇒ cosec A = 1 sin A
⇒ cosec A = 1 m
⇒ cosec 2 A = 1 m 2 ...........(i)
and tan A = n
⇒ 1 tan A = 1 n
⇒ cot A = 1 n
⇒ cot 2 A = 1 n 2 .............(ii)
Subtracting (ii) form (i),
cosec² A - cot² A = 1 m 2 – 1 n 2
⇒ 1 = m-2 - n-2 (∵ cosec2 A - cot2 A = 1 )
∴ m-2 - n-2 = 1.
39.If sec θ + tanθ = x , show that : sin θ = x 2 - 1 x 2 + 1.
Solution: Given,
sec θ + tan θ = x
⇒ 1 cos θ + sin θ cos θ = x
⇒1 + sin θ cos θ = x
⇒ 1+ sin θ = x cos θ
Squaring both sides,
(1 + sinθ)2 = x2 cos2 θ
⇒ 1 + 2sin θ + sin2 θ = x2 (1 - sin2 θ)
⇒ 1+ 2sin θ + sin2 θ = x2 - x2 sin2 θ
⇒ (1 + x2) sin2 θ + 2 sin θ + (1 - x2 ) = 0
⇒ (1 + x2) sin2 θ + {(1 + x2 ) + (-x2 )sin θ} + (1 - x2 ) = 0
⇒ (1 + x2) sin2 θ + (1 + x2 ) sin θ + (1 - x2 )sin θ + (1 - x2 ) = 0
⇒ (1 + x2) sin θ (sin θ+1) + (1 - x2 ) (sin θ + 1) = 0
⇒ [(1 + x2) sin θ + (1 - x2 )] (sin θ + 1) = 0.
Either ,(1 + x2) sin θ + (1 - x2) = 0
⇒ (1 + x2) sin θ = x2 - 1
⇒ sin θ = x 2 - 1 x 2 + 1
∴ sin θ = x 2 - 1 x 2 + 1.
40. If cos4A + cos2A = 1, then prove that: sec4A - sec2A = 1
Proof: Given,
cos4 A + cos2 A = 1
⇒ 1 sec 4 A + 1 sec 2 A = 1 ∴ cos A = 1 sec A
⇒1 + sec 2 A sec 4 A = 1
⇒1 + sec 2 A = s ec 4 A
⇒1 = sec 4 A – sec 2 A
∴ sec 4 A - sec 2 A = 1.
⇒ cos 4 A = 1 - cos 2 A
⇒ cos 4 A = sin 2 A.
Now,
LHS = tan 4 A + tan 2 A
= sin 4 A cos 4 A + sin 2 A cos 2 A
= cos 4 A 2 cos 4 A + cos 4 A 2 cos 2 A (∵ cos 4 A = sin2 A)
= cos4 A + cos 2 A (Given cos 4 A + cos 2 A = 1)
= 1.
∴ tan 4A + tan 2A = 1.
Proved.
42. If 3 sin B + 5 cos B = 5, show that: 3 cos B - 5 sin B =± 3.
(tan A - sin A) = q................ (ii)
Multiplying (i) & (ii)
tan2 A - sin2 A = pq
⇒ pq = sin 2 A cos 2 A – sin 2 A
=sin 2 A - sin 2 A cos 2 A cos 2 A
=sin 2 A cos 2 A 1 - cos 2 A
= tan 2 A. sin 2 A
∴ √ pq = tan tan A . sin sin A … … … … … .. iii
Again squaring & subtracting (i) & (ii)
(tan A + sin A ) 2 = p2............... (i)
(tan A - sin A) 2 = q2................ (ii)
tan2 A+ 2 tan A sin A + sin2 A - tan2 A + 2 tan A sin A - sin2 A = p2 - q2
⇒ 4 tan A sin A = p2 - q2
⇒ 4√pq = p2 - q2 [ ∵ from (iii) ]
∴ p2 - q2 = 4√pq.
tan θ = y x
⇒ sin θ cosθ = y x
⇒ sin θ = y x cos θ
Now,
Put sin θ = (y )/x cosθ in
x sin3 θ - sin2 θ cos θ + y cos3 θ = 0
⇒ y x cos θ 3 - y x 2 cos 2 θ + y. cos 3 θ = 0
⇒ y 3 x 2 cos 3 θ - y 2 x 2 cos 3 θ + y cos 3 θ = 0
⇒ y 3 cos3 θ - y 2 cos3 θ + x 2 y cos3 θ = 0
⇒ y cos3 θ(y 2- 1+ x 2) = 0
⇒ y 2- 1+ x 2 = 0
⇒ x 2+ y 2 = 1.
∴ LHS = RHS
Proved.
45.If 1 sin sin A + 1 sin sin B + 1 sin sin C = 0 , then prove that : sin sin A + sin sin B + sin sin C 2 = 3 - cos 2 A + cos 2 B + cos 2 C
1 sin A + 1 sin B + 1 s sin C = 0
⇒ 1 sin A + 1 sin B = - 1 sin C
⇒ sin A + sin B = - sin A sin B sin C
⇒ sin A sin C + sin B sin C = - SinBsin A
LHS
= (sin A + sin B + sin C)2
= sin2 A + sin2 B + Sin2 c + 2 (sin A sin B + sin B sin C + sin A sin C)
= 1 - cos2 A + 1 - cos2 B + 1 - cos2 C + 2 (sin A sin B - sin A sin B)
= 3 - (cos2 A + cos2 B + cos2 C) + 2 × 0
= 3 - (cos2 A + cos2 B + cos2 C)
= RHS.
46. Find the value of x in the given equation:
x cos (90 ° + α) cos( 90 ° - α) + tan 180 ° - α cot (90 ° + α)= sin α sin (180 ° - α )
x cos (90 ° + α) cos (90 ° - α) + tan (180 ° - α) cot (90 ° + α) = sin α sin (180 ° - α )
⇒x (- sin α ). sin α + tan α (- tan α) = sin α . sin α
⇒- x sin 2 α + tan 2 α = sin 2 α
⇒ tan 2 α - sin 2 α = x sin 2 α
⇒tan 2 α – sin 2 α sin 2 α = x
⇒ tan 2 α sin 2 α - sin 2 α sin 2 α = x
⇒sec 2 α - 1 = x
⇒ tan 2 α = x
∴ x = tan 2 α is the required solution.
48. Find the value of x in the given equation:
xsec(90 ° + α) cosec α + tan( 90 ° + α ) cot (180 ° - α) = x cot α tan( 90 ° + α )
x sec (90 ° + α) cosec α + tan (90 ° + α) cot (180 ° - α) = x cot α tan (90 ° + α )
⇒ x (- cosec α) cosec α + (- cot α ). (- cot α) = x cot α (- cot α )
⇒ - x cosec 2 α + cot 2 α = - x cot 2 α
⇒ - x cosec 2 α + x cot 2 α = - cot 2 α
⇒ - x ( cosec 2 α - cot 2 α ) = - cot 2 α
⇒ x × 1 = cot 2 α
∴ x = cot2 α is the required solution.
49. Prove that :tan 205 ° - tan 115 ° tan 245 ° + tan 335 ° = 1 + p 2 1 – p 2 , if tan 25 ° = P. Proof: Given tan 25° = p Þ cot cot 25 ° = 1 p
Now,
LHS = tan 205 ° - tan 115 ° tan 245 ° + tan 335 °
= tan 180 ° + 25 ° - tan 90 ° + 25 ° tan 270 ° - 25 ° + tan 360 ° - 25 °
=tan 25 ° + cot 25 ° cot 25 ° - tan 25 °
=p + 1 p 1 p – p
=P 2 + 1 p 1 p – p 1 – p 2 p
1 + p 2 1 – p 2 = RHS proved.
50. If θ = 45°, then prove that:sin 3 θ - 3 sinθ – 4 sin 3 θ 2 = 1 2 sin 3 θ Solution: Given,
θ = 45°
LHS = sin( 3 × 45 °) - 3 sin 45 ° - 4 sin 3 45 ° 2
= sin 135 ° - 3 × 1 √2 - 4 × ( 1 √2 ) 3 2
= sin (180 ° - 45 °) - √3/2 – 2 √2 2
= sin 45 ° - 3 – 2 2 √2
= 1 2 – 1 2 √2
=2 – 1 2 √2
=1 2 √2
RHS =1 2 sin 3 θ
=1 2 sin 135 °
=1 2 sin (180 ° - 45 ° )
=1 2 sin 45 °
= 1 2 × 1 √2
=1 2 √2
= LHS
51. If A = 2B = 3C =9D = 90°, find the value of cos2 A - cot2 B + cosec2C + 4 sin2 3D.
2B = 90° Þ B = 45°
3C = 90° Þ C = 30°
and 9D = 90° Þ D = 10 °
Now ,
cos2A - cot2B + cos2C + 4 sin2 3D
= cos290° - cos245° + cosec245° + 4 sin2 30°
= 1 2 - 1 2 + √2 2 + 4 × 1 2 2
= 1 – 1 + 2 + 4 × 1 4
= 2 + 1
= 3
52. ABCD is a quadrilateral with opposite angles is supplementary then proves that:
(a) cos A + cos B + cos C + cos D = 0(b) tan A + tan B+ tan C + tan D = 0Solution: According to the question,
A + C = 180° or, A = 180° - C
and B + D = 180 or, B = 180° - D
(a) LHS = Cos A + Cos B + Cos C + Cos D
= cos (180° - C) + cos (180° - D) + cos C + cos D
= - cos C - cos D + cos C + cos D
= 0
= RHS
(b) tan A + tan B + tan C + tan D
= tan (180° - C) + tan (180° - D) + tan C + tan D
= - tan C - tan D + tan C + tan D
= 0 = RHS
Prove:
cot x c 20 cot 3 x c 20 cot 5 x c 20 cot 7 x c 20 cot 9 x c 20 = 1 Proof: LHS = cot π 20 . cot 3 π 20 cot 5 π 20 cot 7 π 20 . cot 9 π 20
= cot π 20 . cot 3 π 20 cot π 4 cot π 2 - 3 π 2 . cot π 2 - π 20
= cot π 20 . cot 3 π 20 × 1 × tan 3 π 20 tan π 20
= 1 tan π 20 × 1 tan 3 π 20 × tan 3 π 20 × tan π 20
= 1 RHS
54. Prove :
cot x c 10 cot 3 x c 10 cot x c 4 cot 4 x c 10 cot 2 x c 10 = 1 Solution:
LHS = cot π 10 . cot 3 π 10 cot π 4 cot 4 π 10 cot 2 π 10
= cot π 10 . cot π 2 - 2 π 10 × 1 . cot π 2 – π 10 . cot 2 π 10
= cot π 10 . tan 2 π 10 . tan π 10 × cot 2 π 10
= 1 tan π 10 × tan 2 π 10 × tan π 10 × 1 tan 2 π 10
= 1
Solution: Here,
Sin(-110) = - sin110o
= -sin(90o+30o)
= - cos30o
= - 2. Find the value of cos(-690o).
Solution: Here, Cos(-690o) = cos690o
= cos(2⨉360o-30o)
= cos30° = √3/2
3. Find the value of tan1020o.Solution: Here,
tan1020° = tan(3⨉360° – 60°)
= tan60o
= √3.
= √3.
4. Prove that: sin65° +cos35° = cos25° +sin55°
Proof: Here,
LHS = sin65° + cos35°
= sin(90°-25°) + cos(90°-55°)
= cos25° + sin55°
= RHS.
Proved.
5. Prove that: tan9o.cot27o – cot81o.tan63o = 0
Proof: Here,
LHS = tan9o.cot27o – cot81o.tan63o
= tan(90o – 81o).cot(90o-63o) – cot81o.tan63o
= cot81o.tan63o – cot81o.tan63o
= 0
= RHS.
Proved.
6. If A,B&C are the angles of triangle, prove that : Sin(A+B) = sinC.
Proof: Here, A,B&C are the angles of a triangle6. If A,B&C are the angles of triangle, prove that : Sin(A+B) = sinC.
So, A+B+C = 180°
⇒ A+B = 180° - C
Operating both sides by sin,we get
sin(A+B) = sin(180°-C)
⇒ Sin(A+B) = SinC.
Proved.
7. Find the value of A if sin4A = cosA.
Proof: Here,
sin4A = cosA
⇒ sin4A = cosA
⇒ sin4A = sin(90o-A)
⇒ 4A = 90o - A
⇒ 4A+A = 90o
⇒ 5A=90o
⇒ A=18o.
∴ A = 18o.
8. Find the value of x, if xcos(90°+A).cos(90°-A)+tan(180°-A)cot(90°-A) = sinA.sin(180°-A).
Proof: Here,
xcos(90+A).cos(90-A)+tan(180-A)cot(90+A) = sinA.sin(180-A).
⇒ -xsinA.sinA +tanA.tanA = sinA.sinA
⇒ -xsin2A + tan2A = sin2A
⇒ sin2A + xsin2A = tan2A
⇒ sin2A( 1+x) = tan2A
⇒ 1+ x = sec2A
⇒ x = sec2A-1`
⇒ x = tan2A.
∴ x = tan2A.
9. If A,B& C are angles of a triangle, prove that: tan(A+B)+tanC = 0.
Solution: Here,
A,B& C are angles of a triangle.
So,
A+B+C =180o
i.e. A+B = 180° - C.
Operating both sides by tan,we get
tan(A+B) = tan(180-C)
⇒ tan(A+B) = - tanC
⇒ tan(A+B) + tanC = 0
LHS = RHS
Proved.
10. If A =30o & B=60o, verify : sin(A+B) = sinAcosB + cosAsinB.Solution: Here, A =30o & B=60o.
Now, sin(A+B) = sinAcosB + cosAsinB.
⇒ sin(30o+60o) = sin30o.cos60o+cos30o.sin60o
⇒ sin90o =
⇒ 1 = 1
Verified.
11. Solve for x ,
xcotA.tan(90°+A) = tan(90°+A).cot(180°-A) +xsec(90°+A).cosecA.
Sokution: Here,
⇒ -xcot2A = cot2A - xcosec2A
⇒ xcosec2A - xcot2A = cot2A
⇒ x(cosec2A-cot2A) = cot2A.
⇒ x ⨉ 1 = cot2A
⇒ x = cot2A.
∴ x = cot2A.
12. Prove that: sin(90°+A).cos(180°-A).tan(180°-A) = sin2(90°+A).cot(90°-A).
xcotA.tan(90+A) = tan(90+A).cot(180-A)
+xsec(90+A).cosecA
⇒ xcotA.(-cotA) = -cotA.(-cotA)+x(-cosecA).cosecA⇒ -xcot2A = cot2A - xcosec2A
⇒ xcosec2A - xcot2A = cot2A
⇒ x(cosec2A-cot2A) = cot2A.
⇒ x ⨉ 1 = cot2A
⇒ x = cot2A.
∴ x = cot2A.
12. Prove that: sin(90°+A).cos(180°-A).tan(180°-A) = sin2(90°+A).cot(90°-A).
Proof: Here,
LHS = sin(90°+A).cos(180°-A).tan(180°-A)= cosA.(-cosA).(-tanA)
= cos2A.tanA
RHS = sin2(90°+A).cot(90°-A).
= cos2A.tanA
= LHS.
Proved.
13. Without using trigonometric tables, evaluate sin 35° sin 55° - cos 35° cos 55°.
Solution: Here,
sin 35° sin 55° - cos 35° cos 55°
= sin 35° sin (90° - 35°) - cos 35° cos (90° - 35°),
= sin 35° cos 35° - cos 35° sin 35°,
[Since sin (90° - θ) = cos θ and cos (90° - θ) = sin θ]
= sin 35° cos 35° - sin 35° cos 35°= 0.
14. If sec 5θ = cosec (θ - 36°), where 5θ is an acute angle, find the value of θ.
Solution: Here,
sec 5θ = cosecc (θ - 36°)
⇒ cosec (90° - 5θ) = cosec(θ - 36°), [Since sec θ = csc (90° - θ)]
⇒ (90° - 5θ) = (θ - 36°)
⇒ -5θ - θ = -36° - 90°
⇒ -6θ = -126°
⇒ θ = 21°, [Dividing both sides by -6]
Therefore, θ = 21°.
15. Using trigonometrical ratios of complementary angles prove that tan 1° tan 2° tan 3° ......... tan 89° = 1.
Proof: Here,
LHS= tan 1° tan 2° tan 3° ...... tan 89°
= tan 1° tan 2° ...... tan 44° tan 45° tan 46° ...... tan 88° tan 89°
= (tan 1° ∙ tan 89°) (tan 2° ∙ tan 88°) ...... (tan 44° ∙ tan 46°) ∙ tan 45°
= {tan 1° ∙ tan (90° - 1°)} ∙ {tan 2° ∙ (tan 90° - 2°)} ...... {tan 44° ∙ tan (90° - 44°)} ∙ tan 45°
= (tan 1° ∙ cot 1°)(tan 2° ∙ cot 2°) ...... (tan 44° ∙ cot 44°) ∙ tan 45°,
[Since tan (90° - θ) = cot θ]= (1)(1) ...... (1) ∙ 1, [Since tan θ ∙ cot θ = 1 and tan 45° = 1]
= 1
Therefore, tan 1° tan 2° tan 3° ...... tan 89° = 1.`
16. Find the value of tan 240°.
Solution: Here,
tan (240)° = tan (180 + 60)°
= tan 60°; [since we know tan (180° + θ) = tan θ.]
= √3.
17. Find the value of sec 210°.
Solution: Here,
sec (210)° = sec (180 + 30)°
= - sec 30°;
[since we know sec (180° + θ) = - sec θ]
= -
18. Find the value of tan 240°.
Solution: Here, tan (240)° = tan (180 + 60)°
= tan 60°; since we know tan (180° + θ)
= tan θ
= √3.
19. Find the value of sec 150°.
Solution: Here,
sec 150° = sec (180 - 30)°
= - sec 30°;
[since we know, sec (180° - θ) = - sec θ]
= - 20. Find the value of tan 120°.
Solution: Here,
tan 120° = tan (180 - 60)°
= - tan 60°; since we know, tan (180° - θ) = - tan θ
= - √3.
21. Find the value of cos 200° sin 160° + sin (- 340°) cos (- 380°).
Solution: Here,
Given,
cos 200° sin 160° + sin (- 340°) cos (- 380°)
= cos (2 × 90° + 20°) sin (1 × 90° + 70°) + (- sin 340°) cos 380°
= - cos 20° cos 70° - sin (3 × 90° + 70°) cos (4 × 90° + 20°)
= - cos 20° cos 700 - (- cos 70°) cos 20°
= - cos 200 cos 70° + cos 70° cos 20°
= 0.
22. Express cos (- 1555°) in terms of the ratio of a positive angle less than 30°.
Solution: Here,
cos(- 1555°) = cos 1555°,
[since we know cos (- θ) = cos θ]
= cos (17 × 90° + 25°)
= - sin 25°;
[since the angle 1555° lies in the second d quadrant and cos ratio is negative in this quadrant. Again, in the angle 1555° = 17 × 90° + 25°, multiplier of 90° is 17, which is an odd integer ; for this reason cos ratio has changed to sin.].
23. A, B, C, D are the four angles, taken in order of a cyclic quadrilateral. Prove that, cot A + cot B + cot C + cot D = 0.
Proof: Here.
We know that the opposite angles of a cyclic quadrilateral are supplementary.
Therefore, by question we have,
A + C= 180° or, C = 180° - A;
And B + D= 180° or, D = 180° - B.
Therefore,
L. H. S. = cot A + cot B + cot C + cot D
= cot A + cot B + cot (180° - A) + cot (180° - B)
= cot A + cot B - cot A - cot B
= 0.
= RHS.
Proved.
24. Prove that:
Proof:
LHS =
=
=
=
=
= 2 cosecA [∴ cosecA =
= RHS.
Proved.
25.
Solution: Here,
Find the value of:
cosec (-1170°)
cosec (-1170°)
cosec (-1170°)
= - cosec (1170°)
= - cosec (3 × 360° + 90°)
= - cosec 90°
= -1
26. If secθ + tanθ= x, show that sinθ =
secθ + tanθ= x
⇒
⇒
Squaring on both sides,
(
⇒
⇒
⇒
⇒ 1 + sinθ = x2 - x2sinθ
⇒ sinθ + x2sinθ = x2 - 1
⇒ sinθ(1 + x2) = x2 - 1
⇒ sinθ =
∴ sinθ =
Proved.
27. If A = 2B = 3C = 90°, find the value of cos2A – cot2B + cosec2C.
Solution: Here,
A = 90°
2B = 90° Þ B = (90° )/2 = 45°
3C = 90° Þ C = (90° )/3 = 30°
Now,
cos2A - cot2B + cosec2C
= cos290° - cot245° + cosec230°
= 02 + (1)2 + (2)2
= -1 + 4
= 3
28. If
Now
=
=
=
=
TanA
=
=
=
29.
30.
31.
=
Proved.
32.
if A is angle and 5 sinA = 3 , find the value of 4 cosecA - 3 cotA.
Solution: =
33.
cosecX
Solution:
34.
=
35.
36. If 15 sin2θ + 2 cos2 θ = 7, find the value of tan θ.Solution: Given,
15 sin2θ + 2 cos2θ = 7
⇒ 15 sin2θ + 2 (1 - sin2θ) = 7
⇒ 15 sin2θ + 2 - 2sin2θ) = 7
⇒ 13 sin2θ = 5
Finally,
37. If 2 + 2 tan θ = sec2 θ, find the value of tan θ.Solution: Given,
2 + 2 tan θ = sec 2 θ
⇒ 2 + 2 tan θ =1 + tan 2 θ
⇒ tan2 θ - 2tan θ - 1 = 0 ......(i)
Comparing this with ax2 + bx + c = 0
We get a =1, b = - 2 , c = -1 & x = tan θ
=
=
=
38. If sin A = m and tan A = n,
Prove that: m-2 - n-2= 1
Solution: Given , sin A = m
and tan A = n
Subtracting (ii) form (i),
⇒ 1 = m-2 - n-2 (∵ cosec2 A - cot2 A = 1 )
∴ m-2 - n-2 = 1.
Proved.
39.
sec θ + tan θ = x
⇒
⇒ 1+ sin θ = x cos θ
Squaring both sides,
(1 + sinθ)2 = x2 cos2 θ
⇒ 1 + 2sin θ + sin2 θ = x2 (1 - sin2 θ)
⇒ 1+ 2sin θ + sin2 θ = x2 - x2 sin2 θ
⇒ (1 + x2) sin2 θ + 2 sin θ + (1 - x2 ) = 0
⇒ (1 + x2) sin2 θ + {(1 + x2 ) + (-x2 )sin θ} + (1 - x2 ) = 0
⇒ (1 + x2) sin2 θ + (1 + x2 ) sin θ + (1 - x2 )sin θ + (1 - x2 ) = 0
⇒ (1 + x2) sin θ (sin θ+1) + (1 - x2 ) (sin θ + 1) = 0
⇒ [(1 + x2) sin θ + (1 - x2 )] (sin θ + 1) = 0.
Either ,(1 + x2) sin θ + (1 - x2) = 0
⇒ (1 + x2) sin θ = x2 - 1
40. If cos4A + cos2A = 1, then prove that: sec4A - sec2A = 1
Proof: Given,
cos4 A + cos2 A = 1
⇒
⇒
⇒
∴ sec 4 A - sec 2 A = 1.
Proved.
41. If cos4A + cos2A = 1, then prove that: tan4A + tan2A = 1
Proof: Given,
cos 4 A + cos 2 A = 1 ⇒ cos 4 A = 1 - cos 2 A
⇒ cos 4 A = sin 2 A.
Now,
LHS = tan 4 A + tan 2 A
= cos4 A + cos 2 A (Given cos 4 A + cos 2 A = 1)
= 1.
∴ tan 4A + tan 2A = 1.
Proved.
42. If 3 sin B + 5 cos B = 5, show that: 3 cos B - 5 sin B =
43.
If tan A + sin A = p and tan A - sin A = q, prove that:
P 2 - q 2 = 4 √pq
Solution: Given,
(tan A + sin A) = p ............... (i)(tan A - sin A) = q................ (ii)
Multiplying (i) & (ii)
tan2 A - sin2 A = pq
=
=
= tan 2 A. sin 2 A
Again squaring & subtracting (i) & (ii)
(tan A + sin A ) 2 = p2............... (i)
(tan A - sin A) 2 = q2................ (ii)
tan2 A+ 2 tan A sin A + sin2 A - tan2 A + 2 tan A sin A - sin2 A = p2 - q2
⇒ 4 tan A sin A = p2 - q2
⇒ 4√pq = p2 - q2 [ ∵ from (iii) ]
∴ p2 - q2 = 4√pq.
Proved.
44.
If x sin 3 θ - sin θ cos θ + y cos 3 θ = 0 and tanθ = y x . Show that x 2 + y 2 = 1 .
Solution: Given,
Now,
Put sin θ = (y )/x cosθ in
x sin3 θ - sin2 θ cos θ + y cos3 θ = 0
⇒ y 3 cos3 θ - y 2 cos3 θ + x 2 y cos3 θ = 0
⇒ y cos3 θ(y 2- 1+ x 2) = 0
⇒ y 2- 1+ x 2 = 0
⇒ x 2+ y 2 = 1.
∴ LHS = RHS
Proved.
45.
Proof: Given,
LHS
= (sin A + sin B + sin C)2
= sin2 A + sin2 B + Sin2 c + 2 (sin A sin B + sin B sin C + sin A sin C)
= 1 - cos2 A + 1 - cos2 B + 1 - cos2 C + 2 (sin A sin B - sin A sin B)
= 3 - (cos2 A + cos2 B + cos2 C) + 2 × 0
= 3 - (cos2 A + cos2 B + cos2 C)
= RHS.
Proved.
46. Find the value of x in the given equation:
Proof: Given, equation
⇒
⇒
⇒
⇒
47.
Find the value of x in the given equation:
sin (270 ° - θ) sin (450 ° - θ) - cos (630 ° - θ) cos (90 ° + θ) + xcos 900 ° = 0
Solution: Do yourself. If any problem, ask me.
48. Find the value of x in the given equation:
xsec(
Solution: Given equation is
∴ x = cot2 α is the required solution.
49. Prove that :
Now,
LHS =
=
=
=
=
50. If θ = 45°, then prove that:
θ = 45°
=
=
RHS =
=
=
=
=
= LHS
Proved.
51. If A = 2B = 3C =9D = 90°, find the value of cos2 A - cot2 B + cosec2C + 4 sin2 3D.
Solution: Given.
A = 2B = 3C = 99 = 90°2B = 90° Þ B = 45°
3C = 90° Þ C = 30°
and 9D = 90° Þ D = 10 °
Now ,
cos2A - cot2B + cos2C + 4 sin2 3D
= cos290° - cos245° + cosec245° + 4 sin2 30°
= 2 + 1
= 3
52. ABCD is a quadrilateral with opposite angles is supplementary then proves that:
(a) cos A + cos B + cos C + cos D = 0(b) tan A + tan B+ tan C + tan D = 0Solution: According to the question,
A + C = 180° or, A = 180° - C
and B + D = 180 or, B = 180° - D
(a) LHS = Cos A + Cos B + Cos C + Cos D
= cos (180° - C) + cos (180° - D) + cos C + cos D
= - cos C - cos D + cos C + cos D
= 0
= RHS
(b) tan A + tan B + tan C + tan D
= tan (180° - C) + tan (180° - D) + tan C + tan D
= - tan C - tan D + tan C + tan D
= 0 = RHS
proved.
53. = 1 RHS
Proved.
54. Prove :
= 1
= RHS
Proved.